Learn R Programming

GAS (version 0.1.1)

MultiGASSpec: Multivariate GAS specification

Description

Specify the conditional distribution, scaling mechanism and time-varying parameters for multivariate GAS models.

Usage

MultiGASSpec(Dist = "mvnorm", ScalingType = "Identity", GASPar = list(location = FALSE, scale = TRUE, correlation = FALSE, shape = FALSE), ScalarParameters = TRUE)

Arguments

Dist
character indicating the label of the conditional distribution. Available distribution can be displayed using the function DistInfo. Default valueDist = "mvnorm"
ScalingType
character indicating the scaling mechanism for the conditional score. Only ScalingType = "Identity" is supported for multivariate distributions.
GASPar
list containing information about which parameters of the conditional distribution have to be time-varying. location = TRUE refers to the location parameters, scale = TRUE refers to the scale parameters, shape = TRUE refers to the shape parameter (e.g. the degree of freedom of the Multivariate Student-t distribution), correlation = TRUE refers to the correlations. If the distribution specified in the Dist argument does not have, say, a shape parameter, the condition shape = TRUE is ignored.
ScalarParameters
logical indicating if the parameters of the locations, scales and correlations dynamic have to be scalars or a diagonal matrices. By default ScalarParameters = TRUE

Value

An object of the class mGASSpec

Details

All the information regarding the supported multivariate conditional distributions can be investigated using the DistInfo function.

References

Creal, D., Koopman, S. J., & Lucas, A. (2012). A dynamic multivariate heavy-tailed model for time-varying volatilities and correlations. Journal of Business & Economic Statistics.

Creal, D., Koopman, S. J., & Lucas, A. (2013). Generalized autoregressive score models with applications. Journal of Applied Econometrics, 28(5), 777-795.

Harvey, A. C. (2013). Dynamic models for volatility and heavy tails: with applications to financial and economic time series (Vol. 52). Cambridge University Press.

Examples

Run this code
# Specify a GAS model with Multivariate Student-t
# conditional distribution and time-varying locations,
# scales and correlations  parameters but constant shape parameter.

library(GAS)

GASSpec = MultiGASSpec(Dist = "mvt", ScalingType = "Identity",
                       GASPar = list(location = TRUE, scale = TRUE,
                                     correlation = TRUE, shape = FALSE))

GASSpec

Run the code above in your browser using DataLab