Learn R Programming

GCPBayes (version 4.3.0)

Bayesian Meta-Analysis of Pleiotropic Effects Using Group Structure

Description

Run a Gibbs sampler for a multivariate Bayesian sparse group selection model with Dirac, continuous and hierarchical spike prior for detecting pleiotropy on the traits. This package is designed for summary statistics containing estimated regression coefficients and its estimated covariance matrix. The methodology is available from: Baghfalaki, T., Sugier, P. E., Truong, T., Pettitt, A. N., Mengersen, K., & Liquet, B. (2021) .

Copy Link

Version

Install

install.packages('GCPBayes')

Monthly Downloads

208

Version

4.3.0

License

GPL (>= 2.0)

Issues

Pull Requests

Stars

Forks

Maintainer

Yazdan Asgari

Last Published

November 28th, 2025

Functions in GCPBayes (4.3.0)

summaryHS

Summary function of Hierarchical Spike
Simulated_summary

Simulated summary statistics for K=5 traits
e2_Monte_Carlo_EM

Internal: e2_Monte_Carlo_EM
HS

Hierarchical Spike
CS

Continuous Spike
DNAJC1

Gene DNAJC1 from BCAC and Epithyr studies
DS

Dirac Spike
MCMCplot

MCMC plot
PARP2_summary

Summary statistics of gene PARP2 from CECILE study
PARP2

Gene PARP2 from CECILE study
Simulated_individual

Simulated individual level data
Simulated_individual_survival

Simulated individual level survival data
summaryDS

Summary function of Dirac Spike
summaryCS

Summary function of Continuous Spike
GCPBayes

GCPBayes Package