powered by
Cross-tabulation and measures of association between two categorical variables
assoc.twocat(x,y,w=rep.int(1,length(x)),na=TRUE)
the first categorical variable (must be a factor)
the second categorical variable (must be a factor)
an optional numeric vector of weights (by default, a vector of 1 for uniform weights)
logical. If TRUE (default), 'NA' are treated as a category. If FALSE, they are ignored
A list with the following elements :
cross-tabulation
percentages
raw percentages
column percentages
Cramer's V2 between the two variables
the matrix of the phi values for each pair of levels
Rakotomalala R., 'Comprendre la taille d'effet (effect size)', http://eric.univ-lyon2.fr/~ricco/cours/slides/effect_size.pdf
assoc.catcont, condesc, catdesc
assoc.catcont
condesc
catdesc
# NOT RUN { data(Music) assoc.twocat(Music$Jazz,Music$Age) # }
Run the code above in your browser using DataLab