
Last chance! 50% off unlimited learning
Sale ends in
Compute the utility function mean(x) - (gamma * sd.p(x))^theta / theta or weighted.mean(x, wt) - (gamma * sd.p(x, wt))^theta / theta.
AMSD(x, gamma = 1, wt = NULL, theta = 1)AMV(x, gamma = 1, wt = NULL)
a numeric vector.
the risk aversion coefficient.
a numeric vector of weights (or probability). If wt is NULL, all elements of x are given the same weight.
a non-negative scalar with a default value of 1.
AMSD
: Computes the utility function mean(x) - (gamma * sd.p(x))^theta / theta or
weighted.mean(x, wt) - (gamma * sd.p(x, wt))^theta / theta. When theta == 2, it is the additive mean-variance utility function (i.e.
the function AMV).
When theta == 1 (the default value), it is the additive mean and standard deviation utility function.
AMV
: Compute the additive mean-variance utility function mean(x) - 0.5 * gamma * var.p(x) or
weighted.mean(x, wt) - 0.5 * gamma * var.p(x, wt).
Nakamura, Yutaka (2015). Mean-Variance Utility. Journal of Economic Theory, 160: 536-556.
# \donttest{
AMSD(1:2, gamma = 0.05)
AMSD(1:2, gamma = 1, theta = 2)
marginal_utility(
c(1, 1.001),
c(0, 1), function (x) AMSD(x, gamma = 0.5)
)
marginal_utility(
c(1.001, 1),
c(0, 1), function (x) AMSD(x, gamma = 0.5)
)
# }
Run the code above in your browser using DataLab