# NOT RUN {
set.seed(100)
sigmaG=AR(0.3,50)
G=MASS::mvrnorm(150,rep(0,50),sigmaG)
E=matrix(rnorm(150*5),150,5)
E[,2]=E[,2]>0;E[,3]=E[,3]>0
alpha=runif(5,2,3)
beta=matrix(0,5+1,50);beta[1,1:8]=runif(8,2,3)
beta[2:4,1]=runif(3,2,3)
beta[2:3,2]=runif(2,2,3)
beta[5,3]=runif(1,2,3)
# continuous with Normal error
y1=simulated_data(G=G,E=E,alpha=alpha,beta=beta,error=rnorm(150),family="continuous")
# survival with Normal error
y2=simulated_data(G,E,alpha,beta,rnorm(150,0,1),family="survival",0.8,1)
# continuous
fit1<-bic.BLMCP(G,E,y1,weight=NULL,lambda1_set=NULL,lambda2_set=NULL,
nlambda1=10,nlambda2=10,gamma1=6,gamma2=6,max_iter=200)
coef1=coef(fit1)
y1_hat=predict(fit1,E,G)
plot(fit1)
# }
# NOT RUN {
## survival
fit2<-bic.BLMCP(G,E,y2,weight=NULL,lambda1_set=NULL,lambda2_set=NULL,
nlambda1=20,nlambda2=20,gamma1=6,gamma2=6,max_iter=200)
coef2=coef(fit2)
y2_hat=predict(fit2,E,G)
plot(fit2)
# }
Run the code above in your browser using DataLab