# NOT RUN {
sigmaG<-AR(rho=0.3,p=30)
sigmaE<-AR(rho=0.3,p=3)
set.seed(300)
G=MASS::mvrnorm(150,rep(0,30),sigmaG)
EC=MASS::mvrnorm(150,rep(0,2),sigmaE[1:2,1:2])
ED = matrix(rbinom((150),1,0.6),150,1)
E=cbind(EC,ED)
alpha=runif(3,0.8,1.5)
beta=matrix(0,4,30)
beta[1,1:4]=runif(4,1,1.5)
beta[2,c(1,2)]=runif(2,1,1.5)
lambda1_set=lambda2_set=c(0.2,0.25,0.3,0.35,0.4,0.5)
# }
# NOT RUN {
#continuous response with outliers/contaminations in response variable
y1=simulated_data(G,E,alpha,beta,error=c(rnorm(140),rcauchy(10,0,5)),family="continuous")
fit1<-bic.PTReg(G,E,y1,lambda1_set,lambda2_set,gamma1=6,gamma2=6,
max_init=50,tau=0.6,mu=2.5,family="continuous")
coefficients1=coefficients(fit1)
y_predict=predict(fit1,E,G)
plot(fit1)
# survival with Normal error
y2=simulated_data(G,E,alpha,beta,rnorm(150,0,1),family="survival",0.7,0.9)
fit2<-bic.PTReg(G,E,y2,lambda1_set,lambda2_set,gamma1=6,gamma2=6,
max_init=50,tau=0.6,mu=2.5,family="survival")
coefficients2=coefficients(fit2)
y_predict=predict(fit2,E,G)
plot(fit2)
# }
Run the code above in your browser using DataLab