Learn R Programming

GET: Global envelopes

https://cran.r-project.org/package=GET

The R package GET provides global envelopes which can be used for central regions of functional or multivariate data (e.g. outlier detection, functional boxplot), for graphical Monte Carlo and permutation tests where the test statistic is a multivariate vector or function (e.g. goodness-of-fit testing for point patterns and random sets, functional ANOVA, functional GLM, n-sample test of correspondence of distribution functions), and for global confidence and prediction bands (e.g. confidence band in polynomial regression, Bayesian posterior prediction).

The development version

The github repository holds a copy of the current development version of the contributed R package GET.

This development version is as or more recent than the official release of GET on the Comprehensive R Archive Network (CRAN) at https://cran.r-project.org/package=GET

Where is the official release?

For the most recent official release of GET, see https://cran.r-project.org/package=GET

Installation

Installing the official release

To install the official release of GET from CRAN, start R and type

install.packages('GET')

Installing the development version

The easiest way to install the GET library from github is through the remotes package. Start R and type:

require(remotes)
install_github('myllym/GET')

If you do not have the R library remotes installed, install it first by running

install.packages("remotes")

After installation, in order to start using GET, load it to R and see the main help page, which describes the functions of the library:

require(GET)
help('GET-package')

If you want to have also vignettes working, you should also install packages from the 'suggests' field, have MiKTeX on your computer, and install the library with

install_github('myllym/GET', build_vignettes = TRUE)

Vignettes

The package contains four vignettes. The GET vignette describes the package in general. It is available by starting R and typing

library("GET")
vignette("GET")

This vignette corresponds to Myllymäki and Mrkvička (2023).

The package provides also a vignette for global envelopes for point pattern analyses, which is available by starting R and typing

library("GET")
vignette("pointpatterns")

The third vignette describes and provides code for the examples of Mrkvička and Myllymäki (2023) using the false discovery rate (FDR) envelopes,

library("GET")
vignette("FDRenvelopes")

Finally, the fourth vignette, available by

library("GET")
vignette("HotSpots")

shows how the methodology proposed by Mrkvička et al. (2023b) for detecting hotspots on a linear network can be performed using GET.

All vignettes are also available at the package webpage https://cran.r-project.org/package=GET

Branches

Currently two branches are provided in the development version. The main branch of GET is called master.

The other branches are called FDR and quantileregression. The FDR branch includes also the experimental FDR envelopes tested in Mrkvička and Myllymäki (2023). The main branch includes the FDR envelopes which were found to have good performance in Mrkvička and Myllymäki (2023).

We note that the quantileregression branch, which included the implementation of the global quantile regression proposed in Mrkvička et al. (2023a), was recently merger to the master.

References

To cite GET in publications use

Myllymäki, M. and Mrkvička, T. (2024). GET: Global envelopes in R. Journal of Statistical Software 111(3), 1-40. doi: 10.18637/jss.v111.i03 https://doi.org/10.18637/jss.v111.i03

and a suitable selection of:

Myllymäki, M., Mrkvička, T., Grabarnik, P., Seijo, H. and Hahn, U. (2017). Global envelope tests for spatial processes. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 79: 381-404. doi: 10.1111/rssb.12172 http://dx.doi.org/10.1111/rssb.12172 (You can find the preprint version of the article here: http://arxiv.org/abs/1307.0239v4)

Myllymäki, M., Grabarnik, P., Seijo, H., and Stoyan, D. (2015). Deviation test construction and power comparison for marked spatial point patterns. Spatial Statistics 11: 19-34. https://doi.org/10.1016/j.spasta.2014.11.004 (You can find the preprint version of the article here: http://arxiv.org/abs/1306.1028)

Mrkvička, T., Soubeyrand, S., Myllymäki, M., Grabarnik, P., and Hahn, U. (2016). Monte Carlo testing in spatial statistics, with applications to spatial residuals. Spatial Statistics 18, Part A: 40--53. https://doi.org/10.1016/j.spasta.2016.04.005

Mrkvička, T., Myllymäki, M. and Hahn, U. (2017). Multiple Monte Carlo testing, with applications in spatial point processes. Statistics and Computing 27 (5): 1239-1255. https://doi.org/10.1007/s11222-016-9683-9

Mrkvička, T., Myllymäki, M., Jilek, M. and Hahn, U. (2020). A one-way ANOVA test for functional data with graphical interpretation. Kybernetika 56 (3), 432-458. http://doi.org/10.14736/kyb-2020-3-0432

Myllymäki, M., Kuronen, M. and Mrkvička, T. (2020). Testing global and local dependence of point patterns on covariates in parametric models. Spatial Statistics 42, 100436. https://doi.org/10.1016/j.spasta.2020.100436

Mrkvička, T., Roskovec, T. and Rost, M. (2021). A nonparametric graphical tests of significance in functional GLM. Methodology and Computing in Applied Probability 23, 593-612. https://doi.org/10.1007/s11009-019-09756-y

Dai, W., Athanasiadis, S. and Mrkvička, T. (2022). A new functional clustering method with combined dissimilarity sources and graphical interpretation. Intech open. https://doi.org/10.5772/intechopen.100124

Dvořák, J. and Mrkvička, T. (2022). Graphical tests of independence for general distributions. Computational Statistics 37, 671--699. https://doi.org/10.1007/s00180-021-01134-y

Mrkvička, T., Myllymäki, M., Kuronen, M. and Narisetty, N. N. (2022). New methods for multiple testing in permutation inference for the general linear model. Statistics in Medicine 41(2), 276-297. https://doi.org/10.1002/sim.9236

Mrkvička and Myllymäki (2023). False discovery rate envelopes. Statistics and Computing 33, 109. https://doi.org/10.1007/s11222-023-10275-7

Mrkvička, T., Konstantinou, K., Kuronen, M. and Myllymäki, M. (2023a). Global quantile regression. arXiv:2309.04746 [stat.ME] https://doi.org/10.48550/arXiv.2309.04746

Mrkvička T., Kraft S., Blažek V., Myllymäki M. (2023b). Hotspot detection on a linear network in the presence of covariates: a case study on road crash data. Available at SSRN: http://dx.doi.org/10.2139/ssrn.4627591

Konstantinou, K., Mrkvička, T. and Myllymäki, M. (2024). Graphical n-sample tests of correspondence of distributions. arXiv:2403.01838 [stat.ME] https://doi.org/10.48550/arXiv.2403.01838

Copy Link

Version

Install

install.packages('GET')

Monthly Downloads

996

Version

1.0-5

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Mari Myllym<c3><a4>ki

Last Published

March 30th, 2025

Functions in GET (1.0-5)

StatCentralRegion

Central region plot
GDPtax

GDP per capita with country groups and profit tax
GET.composite

Adjusted global envelope tests
GET.localcor

The test of local correlations
GET.distrequal

Graphical n sample test of correspondence of distribution functions
GET.variogram

Variogram and residual variogram with global envelopes
GET.distrindep

Test of independence of two general distributions
GDP

GDP
cgec

Centred government expenditure centralization ratios
central_region

Central region / Global envelope
as.curve_set

Convert an envelope or fdata object to a curve_set object
curve_set

Create a curve_set object
create_image_set

Create a curve set of images
deviation_test

Deviation test
abide_9002_23

Local brain activity at resting state
crop_curves

Crop the curves
combined_scaled_MAD_envelope_test

Combined global scaled maximum absolute difference (MAD) envelope tests
adult_trees

Adult trees data set
fclustering

Functional clustering
geom_central_region

Central region plot
fdr_envelope

The FDR envelope
frank.fanova

Rank envelope F-test
frank.flm

F rank functional GLM
global_rq

Global quantile regression
fallen_trees

Fallen trees
fBoxplot

Functional boxplot
forder

Functional ordering
global_envelope_test

Global envelope test
naturalness

Simulated data set
is.curve_set

Check class.
partial_forder

Functional ordering in parts
graph.fanova

One-way graphical functional ANOVA
plot.combined_global_envelope

Plot method for the class 'combined_global_envelope'
plot.combined_fboxplot

Plot method for the class 'combined_fboxplot'
imageset3

A simulated set of images
graph.flm

Graphical functional GLM
plot.combined_global_envelope2d

Plotting function for combined 2d global envelopes
plot.curve_set

Plot method for the class 'curve_set'
plot.curve_set2d

Plot method for the class 'curve_set2d'
plot.fboxplot

Plot method for the class 'fboxplot'
print.combined_fboxplot

Print method for the class 'combined_fboxplot'
print.GET_contingency

Print method for the class 'GET_contingency'
plot.global_envelope2d

Plotting function for 2d global envelopes
print.fboxplot

Print method for the class 'fboxplot'
print.curve_set

Print method for the class 'curve_set'
roadcrash

Road crashes
print.combined_global_envelope

Print method for the class 'combined_global_envelope'
print.deviation_test

Print method for the class 'deviation_test'
print.fdr_envelope

Print method for the class 'fdr_envelope'
rimov

Year temperature curves
print.fclust

Print method for the class 'fclust'
print.global_envelope

Print method for the class 'global_envelope'
popgrowthmillion

Population growth
subset.curve_set

Subsetting curve sets
residual

Residual form of the functions
rank_envelope

The rank envelope test
plot.global_envelope

Plot method for the class 'global_envelope'
plot.fclust

Plot method for the class 'fclust'
saplings

Saplings data set
qdir_envelope

Global scaled maximum absolute difference (MAD) envelope tests
GET-package

Global Envelopes
GET.spatialF

Testing global and local dependence of point patterns on covariates