Learn R Programming

GGIR (version 3.2-0)

GGIR-package: A package to process multi-day raw accelerometer data

Description

Disclaimer: If you are a new GGIR user then please see the GGIR github-pages for a narrative overview of GGIR.

This document is primarily aimed at documenting the functions and their input arguments.

Please note that there is google discussion group for this package (link below).

You can thank us for sharing the code in this package and for developing it as a generic purpose tool by citing the package name and by citing the supporting publications (e.g. Migueles et al. 2019) in your publications.

Arguments

Author

  • Vincent T van Hees <v.vanhees@accelting.com> main creator and developer

  • Zhou Fang developed calibration algorithm used in function g.calibrate

  • Joe Heywood helped develop the functionality to process specific recording days

  • Severine Sabia, Mathilde Chen, and Manasa Yerramalla extensively tested and provided feedback on various functions

  • Joan Capdevila Pujol helped to improve various functions

  • Jairo H Migueles <jairohm@ugr.es> helped to improve various functions

  • Matthew R Patterson helped with enhancing the visual report.

  • Lena Kushleyeva helped fix bug in sleep detection.

  • Taren Sanders helped tidy up the parallel processing functionality

Details

Package:GGIR
Type:Package
Version:3.2-0
Date:2025-02-20
License:Apache License (== 2.0)
Discussion group:https://groups.google.com/forum/#!forum/rpackageggir

References

  • Migueles JH, Rowlands AV, et al. GGIR: A Research Community-Driven Open Source R Package for Generating Physical Activity and Sleep Outcomes From Multi-Day Raw Accelerometer Data. Journal for the Measurement of Physical Behaviour. 2(3) 2019. doi:10.1123/jmpb.2018-0063.

  • van Hees VT, Gorzelniak L, Dean Leon EC, Eder M, Pias M, et al. (2013) Separating Movement and Gravity Components in an Acceleration Signal and Implications for the Assessment of Human Daily Physical Activity. PLoS ONE 8(4): e61691. doi:10.1371/journal.pone.0061691

  • van Hees VT, Fang Z, Langford J, Assah F, Mohammad A, da Silva IC, Trenell MI, White T, Wareham NJ, Brage S. Auto-calibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: an evaluation on four continents. J Appl Physiol (1985). 2014 Aug 7

  • van Hees VT, Sabia S, et al. (2015) A novel, open access method to assess sleep duration using a wrist-worn accelerometer, PLoS ONE, November 2015

Examples

Run this code
  if (FALSE) {
    #inspect file:
    I = g.inspectfile(datafile)

    #autocalibration:
    C = g.calibrate(datafile)

    #get meta-data:
    M = g.getmeta(datafile)
  }
  data(data.getmeta)
  data(data.inspectfile)
  data(data.calibrate)

  #impute meta-data:
  IMP = g.impute(M = data.getmeta, I = data.inspectfile)
  #analyse and produce summary:
  A = g.analyse(I = data.inspectfile, C = data.calibrate, M = data.getmeta, IMP, ID = "01wk0")
  #plot data
  g.plot(IMP, M = data.getmeta, I = data.inspectfile, durplot=4)

Run the code above in your browser using DataLab