Learn R Programming

GGMncv (version 2.1.1)

compare_edges: Compare Edges Between Gaussian Graphical Models

Description

Establish whether each of the corresponding edges are significantly different in two groups, with the de-sparsified estimator of jankova2015confidenceGGMncv.

Usage

compare_edges(object_1, object_2, method = "fdr", alpha = 0.05, ...)

Arguments

object_1

object of class ggmncv .

object_2

An object of class ggmncv.

method

Character string. A correction method for multiple comparisons (defaults to fdr), which can be abbreviated. See p.adjust.

alpha

Numeric. Significance level (defaults to 0.05).

...

Currently ignored.

Value

  • P_diff De-sparsified partial correlation differences

  • adj Adjacency matrix based on the p-values.

  • pval_uncorrected Uncorrected p-values

  • pval_corrected Corrected p-values

  • method The approach used for multiple comparisons

  • alpha Significance level

References

Examples

Run this code
# NOT RUN {
# data
# note: all edges equal
Y1 <- MASS::mvrnorm(250, rep(0, 10), Sigma = diag(10))
Y2 <- MASS::mvrnorm(250, rep(0, 10), Sigma = diag(10))

# fit models
# note: atan penalty by default

# group 1
fit1 <- ggmncv(cor(Y1), n = nrow(Y1),
               progress = FALSE)

# group 2
fit2 <- ggmncv(cor(Y2), n = nrow(Y2),
               progress = FALSE)

# compare
compare_ggms <- compare_edges(fit1, fit2)

compare_ggms
# }

Run the code above in your browser using DataLab