p <- 100 # number of variables
 n <- 50 # sample size
 ###############################
 # Simulate data
 ###############################
 simulation <- simulateData(G = p, etaA = 0.02, n = n, r = 1)
 data <- simulation$data[[1]]
 stddata <- scale(x = data, center = TRUE, scale = TRUE)
   
 ###############################
 # estimate ridge parameter
 ###############################
 lambda.array <- seq(from = 0.1, to = 20, by = 0.1) * (n - 1.0)
 fit <- lambda.cv(x = stddata, lambda = lambda.array, fold = 10L)
 lambda <- fit$lambda[which.min(fit$spe)] / (n - 1.0)
   
 ###############################
 # calculate partial correlation
 # using ridge inverse
 ###############################
 w.upper <- which(upper.tri(diag(p)))
 partial <- solve(lambda * diag(p) + cor(data))
 partial <- (-scaledMat(x = partial))[w.upper]
   
 ###############################
 # get p-values from empirical 
 # null distribution 
 ###############################
 efron.fit <- getEfronp(z = transFisher(x = partial))
 
Run the code above in your browser using DataLab