eqtlTests.me(smlSet, rhs = ~1, runname = "20", targdir = "cisScratch.me", pvot = 0.5, geneApply = lapply, shortfac = 100, checkValid = TRUE, useUncertain = TRUE, glmfamily = "gaussian", scoretx = abs, matrixEQTL.engine.control = list(output_file_name = "/dev/null", useModel = modelLINEAR, errorCovariance = numeric(), verbose = FALSE, pvalue.hist = FALSE), snpSlicedData.control = .slicedDataDefaults, geneSlicedData.control = .slicedDataDefaults, covarSlicedData.control = .slicedDataDefaults, covariates_file_name = character())
smlSet-class
snp.rhs.tests
pvOutputThreshold
in
Matrix_eQTL_engine
mclapply
is suitable when in
multicore environments
snp.rhs.tests
Matrix_eQTL_engine
SlicedData-class
instances
SlicedData-class
instances
SlicedData-class
instances
regressOut
can be used
to avoid this if plug-in FDR are to be used
eqtlTests
if (require(MatrixEQTL)) {
g22 = nsFilter( chrFilter( getSS("GGdata", "22"), "22" ), var.cutoff = .8 )
m22 = eqtlTests.me(g22)
}
Run the code above in your browser using DataLab