Learn R Programming

GLDEX (version 2.0.0.9.3)

QUnif: Quasi Randum Numbers via Halton Sequences

Description

These functions provide quasi random numbers or space filling or low discrepancy sequences in the \(p\)-dimensional unit cube.

Usage

sHalton(n.max, n.min = 1, base = 2, leap = 1)
 QUnif (n, min = 0, max = 1, n.min = 1, p, leap = 1)

Value

sHalton(n,m) returns a numeric vector of length n-m+1 of values in \([0,1]\).

QUnif(n, min, max, n.min, p=p) generates n-n.min+1

p-dimensional points in \([min,max]^p\) returning a numeric matrix with p columns.

Arguments

n.max

maximal (sequence) number.

n.min

minimal sequence number.

n

number of \(p\)-dimensional points generated in QUnif. By default, n.min = 1, leap = 1 and the maximal sequence number is n.max = n.min + (n-1)*leap.

base

integer \(\ge 2\): The base with respect to which the Halton sequence is built.

min, max

lower and upper limits of the univariate intervals. Must be of length 1 or p.

p

dimensionality of space (the unit cube) in which points are generated.

leap

integer indicating (if \(> 1\)) if the series should be leaped, i.e., only every leapth entry should be taken.

Author

Martin Maechler

References

James Gentle (1998) Random Number Generation and Monte Carlo Simulation; sec.\ 6.3. Springer.

Kocis, L. and Whiten, W.J. (1997) Computationsl Investigations of Low-Discrepancy Sequences. ACM Transactions of Mathematical Software 23, 2, 266--294.

Examples

Run this code
32*sHalton(20, base=2)
QUnif(n=10,p=2,leap=409)

Run the code above in your browser using DataLab