fun.RMFMKL.qs: Fit FMKL generalised lambda distribution to data set using quantile
matching
Description
This function fits FMKL generalised lambda distribution to data set
using quantile matching
Usage
fun.RMFMKL.qs(data, fmkl.init = c(-0.25, 1.5), leap = 3, FUN = "runif.sobol",
trial.n = 100, len = 1000, type = 7, no = 10000)
Value
A vector representing four parametefmkl of the FMKL generalised lambda
distribution.
Arguments
data
Dataset to be fitted
fmkl.init
Initial values for FMKL distribution optimization,
c(-0.25,1.5) tends to work well.
leap
See scrambling argument in fun.gen.qrn.
FUN
A character string of either "runif.sobol" (default), "runif.sobol.owen",
"runif.halton" or "QUnif".
trial.n
Number of evenly spaced quantile ranging from 0 to 1 to be
used in the checking phase, to find the best set of initial values for
optimisation, this is intended to be lower than len to speed up the
fitting algorithm. Default is 100.
len
Number of evenly spaced quantile ranging from 0 to 1 to be used,
default is 1000
type
Type of quantile to be used, default is 7, see quantile
no
Number of initial random values to find the best initial values for
optimisation.
Author
Steve Su
Details
This function provides quantile matching fitting scheme for FMKL GLD. Note this
function can fail if there are no defined percentiles from the data set or if
the initial values do not lead to a valid FMKL generalised lambda distribution.
References
Su (2008). Fitting GLD to data via quantile matching method. (Book chapter to
appear)