Learn R Programming

GLDEX (version 2.0.0.9.3)

fun.data.fit.lm: Fit data using L moment matching estimation for RS and FMKL GLD

Description

This function fits generalised lambda distributions to data using L moment matching method

Usage

fun.data.fit.lm(data, rs.leap = 3, fmkl.leap = 3, rs.init = c(-1.5, 1.5), 
fmkl.init = c(-0.25, 1.5), FUN = "runif.sobol", no = 10000)

Value

A matrix showing the parameters of RS and FMKL generalised lambda distributions.

Arguments

data

Dataset to be fitted.

rs.leap

See scrambling argument in fun.gen.qrn.

fmkl.leap

See scrambling argument in fun.gen.qrn.

rs.init

Inititial values (lambda3 and lambda4) for the RS generalised lambda distribution.

fmkl.init

Inititial values (lambda3 and lambda4) for the FMKL generalised lambda distribution.

FUN

A character string of either "runif.sobol" (default), "runif.sobol.owen", "runif.halton" or "QUnif".

no

Number of initial random values to find the best initial values for optimisation.

Author

Steve Su

Details

This function consolidates fun.RPRS.lm and fun.RMFMKL.lm and gives all the fits in one output.

References

Asquith, W. (2007). "L-moments and TL-moments of the generalized lambda distribution." Computational Statistics and Data Analysis 51(9): 4484-4496.

Karvanen, J. and A. Nuutinen (2008). "Characterizing the generalized lambda distribution by L-moments." Computational Statistics and Data Analysis 52(4): 1971-1983.

See Also

fun.RPRS.qs, fun.RMFMKL.qs, fun.data.fit.ml, fun.data.fit.hs, fun.data.fit.hs.nw , fun.data.fit.qs, fun.data.fit.mm

Examples

Run this code
# \donttest{
# Fitting normal(3,2) distriution using the default setting
 junk<-rnorm(50,3,2)
 fun.data.fit.lm(junk)
# }

Run the code above in your browser using DataLab