fun.data.fit.qs: Fit data using quantile matching estimation for RS and FMKL GLD
Description
This function fits generalised lambda distributions to data using quantile
matching method
Usage
fun.data.fit.qs(data, rs.leap = 3, fmkl.leap = 3, rs.init = c(-1.5, 1.5),
fmkl.init = c(-0.25, 1.5), FUN = "runif.sobol", trial.n = 100, len = 1000,
type = 7, no = 10000)
Value
A matrix showing the parameters of RS and FMKL generalised lambda distributions.
Arguments
data
Dataset to be fitted.
rs.leap
See scrambling argument in fun.gen.qrn.
fmkl.leap
See scrambling argument in fun.gen.qrn.
rs.init
Inititial values (lambda3 and lambda4) for the RS generalised
lambda distribution.
fmkl.init
Inititial values (lambda3 and lambda4) for the FMKL
generalised lambda distribution.
FUN
A character string of either "runif.sobol" (default), "runif.sobol.owen",
"runif.halton" or "QUnif".
trial.n
Number of evenly spaced quantile ranging from 0 to 1 to be
used in the checking phase, to find the best set of initial values for
optimisation, this is intended to be lower than len to speed up the
fitting algorithm. Default is 100.
len
Number of evenly spaced quantile ranging from 0 to 1 to be used,
default is 1000
type
Type of quantile to be used, default is 7, see quantile
no
Number of initial random values to find the best initial values for
optimisation.
Author
Steve Su
Details
This function consolidates fun.RPRS.qs and
fun.RMFMKL.qs and gives all the fits in
one output.
References
Su (2008). Fitting GLD to data via quantile matching method.
(Book chapter to appear)