# NOT RUN {
n<-3 ## number of species
apetree<-ape::rtree(n)
### Define Brownian motion parameters to be able to simulate data under the Brownian motion model.
BMparameters<-list(vX0=matrix(0,nrow=2,ncol=1),Sxx=rbind(c(1,0),c(0.2,1)))
### Now simulate the data and remove the values corresponding to the internal nodes.
xydata<-mvSLOUCH::simulBMProcPhylTree(apetree,X0=BMparameters$vX0,Sigma=BMparameters$Sxx)
xydata<-xydata[(nrow(xydata)-n+1):nrow(xydata),]
x<-xydata[,1]
y<-xydata[,2]
yerror<-diag((stats::rnorm(n,mean=0,sd=0.1))^2) #create error matrix
y<-mvtnorm::rmvnorm(1,mean=y,sigma=yerror)[1,]
xerror<-diag((stats::rnorm(n,mean=0,sd=0.1))^2) #create error matrix
x<-mvtnorm::rmvnorm(1,mean=x,sigma=xerror)[1,]
GLSME(y=y, CenterPredictor=TRUE, D=cbind(rep(1, n), x), Vt=ape::vcv(apetree),
Ve=yerror, Vd=list("F",ape::vcv(apetree)), Vu=list("F", xerror))
# }
Run the code above in your browser using DataLab