library(GMDH2)
library(mlbench)
data(BreastCancer)
data <- BreastCancer
# to obtain complete observations
completeObs <- complete.cases(data)
data <- data[completeObs,]
x <- data.matrix(data[,2:10])
y <- data[,11]
seed <- 12345
set.seed(seed)
nobs <- length(y)
# to split train, validation and test sets
indices <- sample(1:nobs)
ntrain <- round(nobs*0.6,0)
nvalid <- round(nobs*0.2,0)
ntest <- nobs-(ntrain+nvalid)
train.indices <- sort(indices[1:ntrain])
valid.indices <- sort(indices[(ntrain+1):(ntrain+nvalid)])
test.indices <- sort(indices[(ntrain+nvalid+1):nobs])
x.train <- x[train.indices,]
y.train <- y[train.indices]
x.valid <- x[valid.indices,]
y.valid <- y[valid.indices]
x.test <- x[test.indices,]
y.test <- y[test.indices]
set.seed(seed)
# to construct model via dce-GMDH algorithm
model <- dceGMDH(x.train, y.train, x.valid, y.valid)
# to obtain predicted classes for test set
y.test_pred <- predict(model, x.test, type = "class")
# to obtain confusion matrix and some statistics for test set
confMat(y.test_pred, y.test, positive = "malignant")
# to obtain statistics from table
result <- table(y.test_pred, y.test)
confMat(result, positive = "malignant")
Run the code above in your browser using DataLab