Get two-sample normal-gamma interim OC curve data.frame
get.ts.ng.trt.int.oc.df(
mu.0.t = 0,
n.0.t = 1e-04,
alpha.0.t = 0.25,
beta.0.t = 1,
mu.0.c = 0,
n.0.c = 10,
alpha.0.c = 2.5,
beta.0.c = 10,
Delta.lrv = 1.5,
Delta.tv = 3,
mu.c = 0.25,
s.t = 1.5,
s.c = 1.5,
npointsLookup = 20,
npoints = 20,
n.MC.lookup = 500,
n.MC = 500,
tau.tv = 0.1,
tau.lrv = 0.8,
tau.ng = 0.65,
n.int.t = c(27, 40),
n.int.c = c(27, 40),
final.n.t = 55,
final.n.c = 55,
go.thresh = 0.6,
ng.thresh = 0.6,
go.parallel = TRUE,
cl = cl,
seed = 1234,
include_nogo = TRUE
)
A data.frame is returned.
prior mean for treatment group
prior effective sample size parameter for treatment group
prior alpha parameter for treatment group
prior beta parameter for treatment group
prior mean for control group
prior effective sample size parameter for control group
prior alpha parameter for control group
prior beta parameter for control group
TPP Lower Reference Value aka Min TPP
TPP Target Value aka Base TPP
assumed mean for control group
treatment standard deviation
control standard deviation
number of points for lookup table
number of points to run simulations
number of trials used for lookup table
number of trials run at each point
threshold associated with Base TPP
threshold associated with Min TPP
threshold associated with No-Go
interim sample sizes for treatment arm
interim sample sizes for control arm
final sample size: treatment arm
final sample sizE: control arm
interim predictive probability threshold for go
interim predictive probability threshold for no-go
logical for parallel processing
cl
random seed
logical
# \donttest{
my.ts.ng.trt.int.oc.df <- get.ts.ng.trt.int.oc.df(npointsLookup = 2, npoints=3, n.MC.lookup=5,
n.MC=5, go.parallel=FALSE)
# }
Run the code above in your browser using DataLab