AnnotatedDataFrame while representing the mean
and confidence interval of groups of samples defined by levels of a valid
grouping factor from the AnnotatedDataFrame.In the case of a gene name represented by multiple gene or probeset identifiers in the dataset, a lattice of plots will be produced. Each of the plots in this lattice can subsequently be plotted separately using its associated index.
expression_plot_symbol( gene_symbol, result, eSet, x_var, f=result$factor, subset=NULL, index=0, xlab=x_var, ylab="log2(cpm)", ylim=range(exprs(eSet)), col.palette="Accent", col=brewer.pal(n=length(levels(pData(eSet)[,f])), name=col.palette), level=0.95, titles=c(), title.size=2, axis.title.size=20, axis.text.size=15, axis.text.angle=0, legend.title.size=20, legend.text.size=20, legend.key.size=30)rownames(AlvMac_results$genes).
GO_analyse() or subset_scores() function.
ExpressionSet of the Biobase package including a
gene-by-sample expression matrix in the AssayData slot, and a
phenotypic information data-frame in the phenodate slot. In the
expression matrix, row names are Ensembl gene identifiers or probeset
identifiers, and column names are sample identifiers. In the phentypic
data-frame, row names are sample idenfifiers, column names are grouping
factors and phenotypic traits usable for the one-way ANOVA.
phenodata to plot on the X-axis. If representing
time on the X-axis, users should store the time-points as numeric values
in the AnnotatedDataFrame to adequately space the time-points.
phenodata to group the samples when representing
mean and confidence interval. The factor specified in the initial
GO_analyse() call is used by default. Unexpected grouping factors
of samples can reveal interesting trends (e.g. "Animal", "Tissue",
"CellType", ...).
eSet. Names must be column names existing
in colnames(pData(eSet)). Values must be vectors of values existing in
the corresponding column of pData(eSet).
index=2 will plot the expression profile of the
second feature identifier alone, for instance.
x_var.
RColorBrewer palette name to fetch the colormap from.
col.palette.
Biobase, methods
expression_plot,
GO_analyse and
ggplot.
# load the sample output data
data(AlvMac_results)
# Expression by gene identifier (TNIP3)
expression_plot_symbol(
gene_symbol="PIK3AP1",
result=AlvMac_results, eSet=AlvMac, x_var="Timepoint"
)
# Same gene, plotted by animal and grouped by treatment (merging time points)
expression_plot_symbol(
gene_symbol="PIK3AP1",
result=AlvMac_results, eSet=AlvMac, x_var="Animal",
f="Treatment"
)
# Same gene, plotted by animal and grouped by time-point (merging treatments)
expression_plot_symbol(
gene_symbol="PIK3AP1",
result=AlvMac_results, eSet=AlvMac, x_var="Animal",
f="Time")
Run the code above in your browser using DataLab