AnnotatedDataFrame
while representing the mean
and confidence interval of groups of samples defined by levels of a valid
grouping factor from the AnnotatedDataFrame.In the case of a gene name represented by multiple gene or probeset identifiers in the dataset, a lattice of plots will be produced. Each of the plots in this lattice can subsequently be plotted separately using its associated index.
expression_plot_symbol( gene_symbol, result, eSet, x_var, f=result$factor, subset=NULL, index=0, xlab=x_var, ylab="log2(cpm)", ylim=range(exprs(eSet)), col.palette="Accent", col=brewer.pal(n=length(levels(pData(eSet)[,f])), name=col.palette), level=0.95, titles=c(), title.size=2, axis.title.size=20, axis.text.size=15, axis.text.angle=0, legend.title.size=20, legend.text.size=20, legend.key.size=30)
rownames(AlvMac_results$genes)
.
GO_analyse()
or subset_scores()
function.
ExpressionSet
of the Biobase
package including a
gene-by-sample expression matrix in the AssayData
slot, and a
phenotypic information data-frame in the phenodate
slot. In the
expression matrix, row names are Ensembl gene identifiers or probeset
identifiers, and column names are sample identifiers. In the phentypic
data-frame, row names are sample idenfifiers, column names are grouping
factors and phenotypic traits usable for the one-way ANOVA.
phenodata
to plot on the X-axis. If representing
time on the X-axis, users should store the time-points as numeric values
in the AnnotatedDataFrame
to adequately space the time-points.
phenodata
to group the samples when representing
mean and confidence interval. The factor specified in the initial
GO_analyse()
call is used by default. Unexpected grouping factors
of samples can reveal interesting trends (e.g. "Animal", "Tissue",
"CellType", ...).
eSet
. Names must be column names existing
in colnames(pData(eSet)). Values must be vectors of values existing in
the corresponding column of pData(eSet).
index=2
will plot the expression profile of the
second feature identifier alone, for instance.
x_var
.
RColorBrewer
palette name to fetch the colormap from.
col.palette
.
Biobase
, methods
expression_plot
,
GO_analyse
and
ggplot
.
# load the sample output data
data(AlvMac_results)
# Expression by gene identifier (TNIP3)
expression_plot_symbol(
gene_symbol="PIK3AP1",
result=AlvMac_results, eSet=AlvMac, x_var="Timepoint"
)
# Same gene, plotted by animal and grouped by treatment (merging time points)
expression_plot_symbol(
gene_symbol="PIK3AP1",
result=AlvMac_results, eSet=AlvMac, x_var="Animal",
f="Treatment"
)
# Same gene, plotted by animal and grouped by time-point (merging treatments)
expression_plot_symbol(
gene_symbol="PIK3AP1",
result=AlvMac_results, eSet=AlvMac, x_var="Animal",
f="Time")
Run the code above in your browser using DataLab