heatmap_GO( go_id, result, eSet, f=result$factor, subset=NULL, gene_names=TRUE, NA.names=FALSE, margins=c(7 ,5), scale="none", cexCol=1.2, cexRow=0.5, labRow=NULL, cex.main=1, trace="none", expr.col=bluered(75), row.col.palette="Accent", row.col=c(), main=paste( go_id, result$GO[result$GO$go_id == go_id,"name_1006"] ), main.Lsplit=NULL, ...)GO_analyse() or a subset of it obtained from
subset_scores().
ExpressionSet of the Biobase package including a
gene-by-sample expression matrix in the assayData slot, and a
phenotypic information data-frame in the phenodata slot. In the
expression matrix, row names are Ensembl gene identifiers or probeset
identifiers, and column names are sample identifiers. In the phentypic
data-frame, row names are sample idenfifiers, column names are grouping
factors and phenotypic traits usable for the one-way ANOVA.
phenodata to label the samples by.
eSet. Names must be column names existing
in colnames(pData(eSet)). Values must be vectors of values existing in
the corresponding column of pData(eSet).
gene_names), whether to display the
gene feature identifier for gene features without associated gene name.
heatmap.2().
heatmap.2().
heatmap.2().
phenoData slot. Default are the values of the factor f.
See heatmap.2().
main.Lsplit for GO terms
with long names.
greenred(75) instead.
RColorBrewer palette name to fetch the colormap from, to
color-code the groups of samples.
heatmap.2().
heatmap.2() function.
heatmap.2,
GO_analyse,
and brewer.pal.info.
# load the sample output data
data(AlvMac_results)
# Heatmap the top-ranked GO term (toll-like receptor 4 signaling pathway) as
# example
heatmap_GO(go_id="GO:0034142", result=AlvMac_results, eSet=AlvMac)
# Same with larger sample labels on the right hand side.
heatmap_GO(go_id="GO:0034142", result=AlvMac_results, eSet=AlvMac, cexRow=1)
# Change the color-coding to green-black-red gradient (more appropriate for
# differential expression values)
library(gplots)
heatmap_GO(
go_id="GO:0034142", result=AlvMac_results, eSet=AlvMac,
expr.col=greenred(75)
)
Run the code above in your browser using DataLab