rm(list = setdiff(ls(), lsf.str()))
### CASE 1:
### Ishigami function definition: y= 1 + Phi_1(x1)*Phi_1(x2) + Phi_3(x2)
Model <- function(x){
a <- 3
b <- 7
res <- sin(pi*x[1,]) + a*sin(pi*x[2,])^2 + b*(pi*x[3,])^4*sin(pi*x[1,])
return(res)
}
# determine the exact solutions for the Ishigami function
a <- 3
b <- 7
MeanExact <- a/2
VarExact <- a^2/8 + b*pi^4/5 + b^2*pi^8/18 + 1/2
SobolExact <- c(b*pi^4/5 + b^2*pi^8/50 + 1/2, a^2/8, 0, 0, 8*b^2*pi^8/225, 0, 0)
# random variable definitgeion
d <- 3 # number of random variables
L <- 4 # quadrature level in each dimention.
# could be anisotropic eg c(3,4,5) for full quadrature
P <- L-1 # maximum polynomial expansion (cardinal order)
M <- getM(d,P) # number of PCE termrs
ParamDistrib <- NULL
# ParamDistrib<- list(beta=rep(0.0,d),alpha=rep(0.0,d))
# PCE definition
QuadType <- "FULL" # type of quadrature
QuadPoly <- rep("LEGENDRE",d) # polynomial to use
ExpPoly <- rep("LEGENDRE",d) # polynomial to use
# QuadType <- "SPARSE" # type of quadrature
# QuadPoly <- 'ClenshawCurtis' # polynomial to use
# ExpPoly <- rep("LEGENDRE",d) # polynomial to use
Quadrature = CreateQuadrature(d,L,QuadPoly,ExpPoly,QuadType,ParamDistrib) # quadrature
# function sampling
y <- Model(Quadrature$QuadNodes) # Ishigami function d=3
# generate PCE coefficients
PCE = generatePCEcoeff(M,Quadrature$QuadSize,y,Quadrature$PolyNodes,Quadrature$QuadWeights) # PCE
# getting mean and variance
PCEMean = PCE$PCEcoeff[1]
PCEVar = sum(PCE$PCEcoeff[2:M]^2*PCE$PhiIJ[2:M])
#
# Sobol' sensitivity analysis
Index <- indexCardinal(d,P)
Sobol = getSobol(d,Index,PCE$PCEcoeff,PCE$PhiIJ)
cat('Mean and variance normalized absolute errors are',
abs(PCEMean-MeanExact)/MeanExact, 'and', abs(PCEVar-VarExact)/VarExact,'\n')
cat('PCE Sobol indices are ',Sobol$Values,'\n')
cat('Sobol absolte errors are ',abs(Sobol$Values-SobolExact),'\n')
Run the code above in your browser using DataLab