Learn R Programming

GPCMlasso (version 0.1-7)

trait.posterior: Calculate Posterior Estimates for Trait Parameters

Description

Calculates posterior estimates for trait/person parameters using the assumption of Gaussian distributed parameters.

Usage

trait.posterior(model, coefs = NULL, cores = 25, tol = 1e-04)

Value

Vector containing all estimates of trait/person parameters.

Arguments

model

Object of class GPCMlasso.

coefs

Vector of coefficients to be used for prediction. If coefs = NULL, the parameters from the BIC-optimal model will be used. If cross-validation was performed, automatically the parameters from the optimal model according to cross-validation are used.

cores

Number of cores to be used in parallelized computation.

tol

The maximum tolerance for numerical integration, for more details see pcubature.

Author

Gunther Schauberger
gunther.schauberger@tum.de

References

Schauberger, Gunther and Mair, Patrick (2019): A Regularization Approach for the Detection of Differential Item Functioning in Generalized Partial Credit Models, Behavior Research Methods, https://link.springer.com/article/10.3758/s13428-019-01224-2

See Also

GPCMlasso GPCMlasso-package

Examples

Run this code
data(tenseness_small)

## formula for simple model without covariates
form.0 <- as.formula(paste("cbind(",paste(colnames(tenseness_small)[1:5],collapse=","),")~0"))

######
## fit simple RSM where loglikelihood and score function are evaluated parallel on 2 cores
rsm.0 <- GPCMlasso(form.0, tenseness_small, model = "RSM", 
control= ctrl_GPCMlasso(cores=2))
rsm.0

if (FALSE) {
## formula for model with covariates (and DIF detection)
form <- as.formula(paste("cbind(",paste(colnames(tenseness_small)[1:5],collapse=","),")~."))

######
## fit GPCM model with 10 different tuning parameters
gpcm <- GPCMlasso(form, tenseness_small, model = "GPCM", 
                  control = ctrl_GPCMlasso(l.lambda = 10))
gpcm
plot(gpcm)
pred.gpcm <- predict(gpcm)
trait.gpcm <- trait.posterior(gpcm)

######
## fit RSM, detect differential step functioning (DSF)
rsm.DSF <- GPCMlasso(form, tenseness_small, model = "RSM", DSF = TRUE, 
                     control = ctrl_GPCMlasso(l.lambda = 10))
rsm.DSF
plot(rsm.DSF)

## create binary data set
tenseness_small_binary <- tenseness_small
tenseness_small_binary[,1:5][tenseness_small[,1:5]>1] <- 2

######
## fit and cross-validate Rasch model
set.seed(1860)
rm.cv <- GPCMlasso(form, tenseness_small_binary, model = "RM", cv = TRUE, 
                   control = ctrl_GPCMlasso(l.lambda = 10))
rm.cv
plot(rm.cv)
}

Run the code above in your browser using DataLab