Plot auto- or cross-covariance function of a multivariate Gaussian process
plotmgpCovFun(
type = "Cov",
output,
outputp,
Data,
hp,
idx,
ylim = NULL,
xlim = NULL,
mar = c(4.5, 5.1, 2.2, 0.8),
oma = c(0, 0, 0, 0),
cex.lab = 1.5,
cex.axis = 1,
cex.main = 1.5
)
A plot
Logical. It can be either 'Cov' (for covariance function) or 'Cor' (for corresponding correlation function).
Integer identifying one element of the multivariate process.
Integer identifying one element of the multivariate process. If 'output' and 'outputp' are the same, the auto-covariance function will be plotted. Otherwise, the cross-covariance function between 'output' and 'outputp' will be plotted.
List of two elements: 'input' and 'response'. The element 'input' is a list of N vectors, where each vector represents the input covariate values for a particular output. The element 'response' is the corresponding list of N matrices (if there are multiple realisations) or vectors (for a single realisation) representing the response variables.
Vector of hyperparameters
Index vector identifying to which output the elements of concatenated vectors correspond to.
Graphical parameter
Graphical parameter
Graphical parameter passed to par().
Graphical parameter passed to par().
Graphical parameter passed to par().
Graphical parameter passed to par().
Graphical parameter passed to par().
## See examples in vignette:
# vignette("mgpr", package = "GPFDA")
Run the code above in your browser using DataLab