Learn R Programming

GPTCM (version 1.1.3)

run_mcmc: Main function implemented in C++ for the MCMC loop

Description

Main function implemented in C++ for the MCMC loop

Usage

run_mcmc(
  nIter,
  burnin,
  thin,
  n,
  nsamp,
  ninit,
  convex,
  npoint,
  dirichlet,
  proportion_model,
  BVS,
  threads,
  gamma_prior,
  gamma_sampler,
  eta_prior,
  eta_sampler,
  initList,
  rangeList,
  hyperparList,
  datEvent,
  datTime,
  datX,
  datX0,
  datProportionConst
)

Arguments

nIter

number of MCMC iterations

burnin

length of MCMC burn-in period

thin

number of thinning

n

number of samples to draw

nsamp

how many samples to draw for generating each sample; only the last draw will be kept

ninit

number of initials as meshgrid values for envelop search

convex

adjustment for convexity (non-negative value, default 1.0)

npoint

maximum number of envelope points

dirichlet

not yet implemented

proportion_model

logical value for modeling the proportions data

BVS

logical value for implementing Bayesian variable selection

threads

maximum threads used for parallelization. Default is 1

gamma_prior

one of c("bernoulli", "MRF")

gamma_sampler

one of c("mc3", "bandit")

eta_prior

one of c("bernoulli", "MRF")

eta_sampler

one of c("mc3", "bandit")

initList

a list of initial values for parameters "kappa", "xi", "betas", and "zetas"

rangeList

a list of ranges of initial values for parameters "kappa", "xi", "betas", and "zetas"

hyperparList

a list of relevant hyperparameters

datEvent

a vector of survival status

datTime

a vector of survival times

datX

an array of cluster-specific covariates

datX0

a matrix of mandatory variables

datProportionConst

an array of cluster-specific proportions