# For POLMM method (ordinal categorical data analysis while adjusting for sample relatedness)
# Step 1(a): fit a null model using a dense GRM (recommand using Linux OS)
PhenoFile <- system.file("extdata", "simuPHENO.txt", package = "GRAB")
PhenoData <- read.table(PhenoFile, header = TRUE)
GenoFile <- system.file("extdata", "simuPLINK.bed", package = "GRAB")
# Limit threads for CRAN checks (optional for users).
Sys.setenv(RCPP_PARALLEL_NUM_THREADS = 2)
obj.POLMM <- GRAB.NullModel(
factor(OrdinalPheno) ~ AGE + GENDER,
data = PhenoData,
subjData = IID,
method = "POLMM",
traitType = "ordinal",
GenoFile = GenoFile,
control = list(showInfo = FALSE, LOCO = FALSE, tolTau = 0.2, tolBeta = 0.1)
)
names(obj.POLMM)
obj.POLMM$tau
# Step 1(b): fit a null model using a sparse GRM (recommand using Linux OS)
# First use getSparseGRM() function to get a sparse GRM file
PhenoData <- read.table(PhenoFile, header = TRUE)
GenoFile <- system.file("extdata", "simuPLINK.bed", package = "GRAB")
SparseGRMFile <- system.file("SparseGRM", "SparseGRM.txt", package = "GRAB")
obj.POLMM <- GRAB.NullModel(
factor(OrdinalPheno) ~ AGE + GENDER,
data = PhenoData,
subjData = IID,
method = "POLMM",
traitType = "ordinal",
GenoFile = GenoFile,
SparseGRMFile = SparseGRMFile,
control = list(showInfo = FALSE, LOCO = FALSE, tolTau = 0.2, tolBeta = 0.1)
)
names(obj.POLMM)
obj.POLMM$tau
# save(obj.POLMM, "obj.POLMM.RData") # save the object for analysis in step 2
# For SPACox method, check ?GRAB.SPACox.
# For SPAmix method, check ?GRAB.SPAmix.
# For SPAGRM method, check ?GRAB.SPAGRM
# For WtCoxG method, check ?GRAB.WtCoxG
Run the code above in your browser using DataLab