Learn R Programming

GREMLINS (version 0.2.1)

predictMBM: Predict NAs in a Collection of Networks from a fitted MBM

Description

Predict NAs in a Collection of Networks from a fitted MBM

Usage

predictMBM(RESMBM, whichModel = 1)

Value

the collection of matrices of predictions (probability for binary, intensity for weighted network) a

Arguments

RESMBM

a fitted multipartite blockmodel

whichModel

The index corresponding to the model used for prediction (default is 1, the best model)

Examples

Run this code
namesFG <- c('A','B')
list_pi <- list(c(0.5,0.5),c(0.3,0.7)) # prop of blocks in each FG
E  <-  rbind(c(1,2),c(2,2)) # architecture of the multipartite net.
typeInter <- c( "inc","diradj")
v_distrib <- c('gaussian','bernoulli')
list_theta <- list()
list_theta[[1]] <- list()
list_theta[[1]]$mean  <- matrix(c(6.1, 8.9, 6.6, 3), 2, 2)
list_theta[[1]]$var  <-  matrix(c(1.6, 1.6, 1.8, 1.5),2, 2)
list_theta[[2]] <- matrix(c(0.7,1.0, 0.4, 0.6),2, 2)
list_Net <- rMBM(v_NQ = c(30,30),E , typeInter, v_distrib, list_pi,
                list_theta, namesFG = namesFG, seed = 2)$list_Net
res_MBMsimu <- multipartiteBM(list_Net, v_distrib,
                              namesFG = c('A','B'), v_Kinit = c(2,2),
                              nbCores = 2,initBM = FALSE)
pred <- predictMBM(res_MBMsimu)

Run the code above in your browser using DataLab