namesFG <- c('A','B','C')
list_pi = list(c(0.16 ,0.40 ,0.44),c(0.3,0.7),c(0.5,0.5))
E <- rbind(c(1,2),c(2,3),c(1,1))
typeInter <- c( "inc","inc", "adj")
v_distrib <- c('ZIgaussian','bernoulli','poisson')
list_theta <- list()
list_theta[[1]] <- list()
list_theta[[1]]$mean <- matrix(c(6.1, 8.9, 6.6, 9.8, 2.6, 1.0), 3, 2)
list_theta[[1]]$var <- matrix(c(1.6, 1.6, 1.8, 1.7 ,2.3, 1.5),3, 2)
list_theta[[1]]$p0 <- matrix(c(0.4, 0.1, 0.6, 0.5 , 0.2, 0),3, 2)
list_theta[[2]] <- matrix(c(0.7,1.0, 0.4, 0.6),2, 2)
m3 <- matrix(c(2.5, 2.6 ,2.2 ,2.2, 2.7 ,3.0 ,3.6, 3.5, 3.3),3,3 )
list_theta[[3]] <- (m3 + t(m3))/2
dataSim <- rMBM(v_NQ = c(100,50,40) , E = E , typeInter = typeInter,
v_distrib = v_distrib, list_pi = list_pi,
list_theta = list_theta, namesFG)
list_net <- dataSim$list_Net
classifTrue <- dataSim$classif
Run the code above in your browser using DataLab