Learn R Programming

General Regression Neural Networks (GRNNs) Package

The goal of GRNNs is to build a GRNN model using different functions. This GRNNs package uses various distance functions including: "euclidean", "minkowski", "manhattan", "maximum", "canberra", "angular", "correlation", "absolute_correlation", "hamming", "jaccard","bray", "kulczynski", "gower", "altGower", "morisita", "horn", "mountford", "raup", "binomial", "chao", "cao","mahalanobis".

Installation

You can install the released version of GRNNs from github with:

library(devtools)
install_github("Shufeng-Li/GRNNs")

Example

This is a basic example which shows you how to use GRNNs:

library(GRNNs)
data("met")
data("physg")
predict<-physg[1,]
physg.train<-physg[-1,]
met.train<-met[-1,]
best.spread<-findSpread(physg.train,met.train,10,"euclidean",scale=TRUE)
prediction<-grnn(predict,physg.train,met.train,fun="euclidean",best.spread,scale=TRUE)

Copy Link

Version

Install

install.packages('GRNNs')

Monthly Downloads

157

Version

0.1.0

License

GPL (>= 3)

Maintainer

Shufeng LI

Last Published

September 8th, 2021

Functions in GRNNs (0.1.0)

findSpreadVegan

Find best spread using vegan function
grnn

General Regression Neural Networks (GRNNs)
findSpread

Find best spread
met

meteorological dataset
findSpreadRdist

find best spreads using Rdist
physg

physiognomy dataset
veg.distance

distance using vegdist
grnn.distance

grnn distance
grnn.kfold

General Regression Neural Networks (GRNNs)