GSCAeda(genedata,pattern,chipdata,SearchOutput,scaledata=F,Pval.co=0.05,Ordering="Average",Title=NULL,outputdir=NULL)
library(GSCA)
## Load example STAT1 target genes defined ChIP-seq and literature
data(STAT1_TG)
## Construct genedata and pattern using the same way as GSCA
Statgenenum <- length(STAT1_TG)
Statgenedata <- data.frame(gsname=c("GS1",rep("GS2",Statgenenum)),gene=c(6772,STAT1_TG),weight=1,stringsAsFactors=FALSE)
Statpattern <- data.frame(gsname=c("GS1","GS2"),acttype="High",cotype="Norm",cutoff=0.1,stringsAsFactors=FALSE)
## Find all contexts in human compendium from GSE7123
GSE7123out <- tabSearch("GSE7123","hgu133a")
## Run GSCAeda
GSCAeda(Statgenedata,Statpattern,"hgu133a",GSE7123out,Pval.co=0.05,Ordering="Average",Title=NULL,outputdir=NULL)
## To save the results, instead of displaying in R console, specifiy an outputdir argument
GSCAeda(Statgenedata,Statpattern,"hgu133a",GSE7123out,Pval.co=0.05,Ordering="Average",Title=NULL,outputdir=tempdir())
Run the code above in your browser using DataLab