library(sp)
library(gstat)
library(ranger)
library(plotKML)
library(raster)
## Ebergotzen data set:
data(eberg)
## subset to 8%
eberg <- eberg[runif(nrow(eberg))<.08,]
coordinates(eberg) <- ~X+Y
proj4string(eberg) <- CRS("+init=epsg:31467")
data(eberg_grid)
gridded(eberg_grid) <- ~x+y
proj4string(eberg_grid) <- CRS("+init=epsg:31467")
## predict sand content:
SNDMHT_A <- autopredict(eberg["SNDMHT_A"], eberg_grid,
auto.plot=FALSE, rvgm=NULL)
plot(raster(SNDMHT_A$predicted["SNDMHT_A"]), col=SAGA_pal[[1]])
## predict soil types:
soiltype <- autopredict(eberg["soiltype"], eberg_grid,
auto.plot=FALSE)
## Not run:
# spplot(soiltype$predicted, col.regions=R_pal[[2]])
# ## most probable class:
# eberg_grid$soiltype <- as.factor(apply(soiltype$predicted@data, 1, which.max))
# levels(eberg_grid$soiltype) = names(soiltype$predicted@data)
# spplot(eberg_grid["soiltype"])
#
# ## Meuse data set:
# demo(meuse, echo=FALSE)
# zinc <- autopredict(meuse["zinc"], meuse.grid[c("dist","ffreq")],
# auto.plot=FALSE, rvgm=NULL)
# spplot(zinc$predicted["zinc"])
# ## End(Not run)
Run the code above in your browser using DataLab