data(throat.otu.tab)
data(throat.tree)
data(throat.meta)
comm <- t(throat.otu.tab)
meta.dat <- throat.meta
set.seed(123)
# For count data
zico.obj <- ZicoSeq(meta.dat = meta.dat, feature.dat = comm,
grp.name = 'SmokingStatus', adj.name = 'Sex', feature.dat.type = "count",
# Filter to remove rare taxa
prev.filter = 0.2, mean.abund.filter = 0, max.abund.filter = 0.002, min.prop = 0,
# Winsorization to replace outliers
is.winsor = TRUE, outlier.pct = 0.03, winsor.end = 'top',
# Posterior sampling to impute zeros
is.post.sample = TRUE, post.sample.no = 25,
# Multiple link functions to capture diverse taxon-covariate relation
link.func = list(function (x) x^0.25, function (x) x^0.5, function (x) x^0.75),
stats.combine.func = max,
# Permutation-based multiple testing correction
perm.no = 99, strata = NULL,
# Reference-based multiple stage normalization
ref.pct = 0.5, stage.no = 6, excl.pct = 0.2,
# Family-wise error rate control
is.fwer = FALSE,
verbose = TRUE, return.feature.dat = TRUE)
which(zico.obj$p.adj.fdr <= 0.1)
ZicoSeq.plot(ZicoSeq.obj = zico.obj, pvalue.type = 'p.adj.fdr',
cutoff = 0.1, text.size = 10, out.dir = NULL, width = 15, height = 10)
Run the code above in your browser using DataLab