Exponential Kernel R6 class
Exponential Kernel R6 class
Object of R6Class with methods for fitting GP model.
R6Class object.
GauPro::GauPro_kernel -> GauPro::GauPro_kernel_beta -> GauPro_kernel_Exponential
k()Calculate covariance between two points
Exponential$k(x, y = NULL, beta = self$beta, s2 = self$s2, params = NULL)
xvector.
yvector, optional. If excluded, find correlation of x with itself.
betaCorrelation parameters.
s2Variance parameter.
paramsparameters to use instead of beta and s2.
kone()Find covariance of two points
Exponential$kone(x, y, beta, theta, s2)
xvector
yvector
betacorrelation parameters on log scale
thetacorrelation parameters on regular scale
s2Variance parameter
dC_dparams()Derivative of covariance with respect to parameters
Exponential$dC_dparams(params = NULL, X, C_nonug, C, nug)
paramsKernel parameters
Xmatrix of points in rows
C_nonugCovariance without nugget added to diagonal
CCovariance with nugget
nugValue of nugget
dC_dx()Derivative of covariance with respect to X
Exponential$dC_dx(XX, X, theta, beta = self$beta, s2 = self$s2)
XXmatrix of points
Xmatrix of points to take derivative with respect to
thetaCorrelation parameters
betalog of theta
s2Variance parameter
clone()The objects of this class are cloneable with this method.
Exponential$clone(deep = FALSE)
deepWhether to make a deep clone.
# NOT RUN {
k1 <- Exponential$new(beta=0)
# }
Run the code above in your browser using DataLab