Beta Kernel R6 class
Beta Kernel R6 class
Object of R6Class with methods for fitting GP model.
R6Class object.
GauPro::GauPro_kernel -> GauPro_kernel_beta
betaParameter for correlation. Log of theta.
beta_estShould beta be estimated?
beta_lowerLower bound of beta
beta_upperUpper bound of beta
beta_lengthlength of beta
s2variance
logs2Log of s2
logs2_lowerLower bound of logs2
logs2_upperUpper bound of logs2
s2_estShould s2 be estimated?
new()Initialize kernel object
GauPro_kernel_beta$new( beta, s2 = 1, D, beta_lower = -8, beta_upper = 6, beta_est = TRUE, s2_lower = 1e-08, s2_upper = 1e+08, s2_est = TRUE )
betaInitial beta value
s2Initial variance
DNumber of input dimensions of data
beta_lowerLower bound for beta
beta_upperUpper bound for beta
beta_estShould beta be estimated?
s2_lowerLower bound for s2
s2_upperUpper bound for s2
s2_estShould s2 be estimated?
k()Calculate covariance between two points
GauPro_kernel_beta$k( x, y = NULL, beta = self$beta, s2 = self$s2, params = NULL )
xvector.
yvector, optional. If excluded, find correlation of x with itself.
betaCorrelation parameters. Log of theta.
s2Variance parameter.
paramsparameters to use instead of beta and s2.
kone()Calculate covariance between two points
GauPro_kernel_beta$kone(x, y, beta, theta, s2)
xvector.
yvector.
betaCorrelation parameters. Log of theta.
thetaCorrelation parameters.
s2Variance parameter.
param_optim_start()Starting point for parameters for optimization
GauPro_kernel_beta$param_optim_start( jitter = F, y, beta_est = self$beta_est, s2_est = self$s2_est )
jitterShould there be a jitter?
yOutput
beta_estIs beta being estimated?
s2_estIs s2 being estimated?
param_optim_start0()Starting point for parameters for optimization
GauPro_kernel_beta$param_optim_start0( jitter = F, y, beta_est = self$beta_est, s2_est = self$s2_est )
jitterShould there be a jitter?
yOutput
beta_estIs beta being estimated?
s2_estIs s2 being estimated?
param_optim_lower()Upper bounds of parameters for optimization
GauPro_kernel_beta$param_optim_lower( beta_est = self$beta_est, s2_est = self$s2_est )
beta_estIs beta being estimated?
s2_estIs s2 being estimated?
p_estIs p being estimated?
param_optim_upper()Upper bounds of parameters for optimization
GauPro_kernel_beta$param_optim_upper( beta_est = self$beta_est, s2_est = self$s2_est )
beta_estIs beta being estimated?
s2_estIs s2 being estimated?
p_estIs p being estimated?
set_params_from_optim()Set parameters from optimization output
GauPro_kernel_beta$set_params_from_optim( optim_out, beta_est = self$beta_est, s2_est = self$s2_est )
optim_outOutput from optimization
beta_estIs beta being estimated?
s2_estIs s2 being estimated?
C_dC_dparams()Calculate covariance matrix and its derivative with respect to parameters
GauPro_kernel_beta$C_dC_dparams(params = NULL, X, nug)
paramsKernel parameters
Xmatrix of points in rows
nugValue of nugget
s2_from_params()Get s2 from params vector
GauPro_kernel_beta$s2_from_params(params, s2_est = self$s2_est)
paramsparameter vector
s2_estIs s2 being estimated?
clone()The objects of this class are cloneable with this method.
GauPro_kernel_beta$clone(deep = FALSE)
deepWhether to make a deep clone.
This is the base structure for a kernel that uses beta = log10(theta) for the lengthscale parameter. It standardizes the params because they all use the same underlying structure. Kernels that inherit this only need to implement kone and dC_dparams.
# NOT RUN {
#k1 <- Matern52$new(beta=0)
# }
Run the code above in your browser using DataLab