Rational Quadratic Kernel R6 class
Rational Quadratic Kernel R6 class
Object of R6Class with methods for fitting GP model.
R6Class object.
GauPro::GauPro_kernel -> GauPro::GauPro_kernel_beta -> GauPro_kernel_RatQuad
alphaalpha value (the exponent). Between 0 and 2.
logalphaLog of alpha
logalpha_lowerLower bound for log of alpha
logalpha_upperUpper bound for log of alpha
alpha_estShould alpha be estimated?
new()Initialize kernel object
RatQuad$new( beta, alpha = 1, s2 = 1, D, beta_lower = -8, beta_upper = 6, beta_est = TRUE, alpha_lower = 0, alpha_upper = Inf, alpha_est = TRUE, s2_lower = 1e-08, s2_upper = 1e+08, s2_est = TRUE )
betaInitial beta value
alphaInitial alpha value
s2Initial variance
DNumber of input dimensions of data
beta_lowerLower bound for beta
beta_upperUpper bound for beta
beta_estShould beta be estimated?
alpha_lowerLower bound for alpha
alpha_upperUpper bound for alpha
alpha_estShould alpha be estimated?
s2_lowerLower bound for s2
s2_upperUpper bound for s2
s2_estShould s2 be estimated?
k()Calculate covariance between two points
RatQuad$k( x, y = NULL, beta = self$beta, logalpha = self$logalpha, s2 = self$s2, params = NULL )
xvector.
yvector, optional. If excluded, find correlation of x with itself.
betaCorrelation parameters.
logalphaA correlation parameter
s2Variance parameter.
paramsparameters to use instead of beta and s2.
kone()Find covariance of two points
RatQuad$kone(x, y, beta, theta, alpha, s2)
xvector
yvector
betacorrelation parameters on log scale
thetacorrelation parameters on regular scale
alphaA correlation parameter
s2Variance parameter
dC_dparams()Derivative of covariance with respect to parameters
RatQuad$dC_dparams(params = NULL, X, C_nonug, C, nug)
paramsKernel parameters
Xmatrix of points in rows
C_nonugCovariance without nugget added to diagonal
CCovariance with nugget
nugValue of nugget
dC_dx()Derivative of covariance with respect to X
RatQuad$dC_dx(XX, X, theta, beta = self$beta, alpha = self$alpha, s2 = self$s2)
XXmatrix of points
Xmatrix of points to take derivative with respect to
thetaCorrelation parameters
betalog of theta
alphaparameter
s2Variance parameter
param_optim_start()Starting point for parameters for optimization
RatQuad$param_optim_start( jitter = F, y, beta_est = self$beta_est, alpha_est = self$alpha_est, s2_est = self$s2_est )
jitterShould there be a jitter?
yOutput
beta_estIs beta being estimated?
alpha_estIs alpha being estimated?
s2_estIs s2 being estimated?
param_optim_start0()Starting point for parameters for optimization
RatQuad$param_optim_start0( jitter = F, y, beta_est = self$beta_est, alpha_est = self$alpha_est, s2_est = self$s2_est )
jitterShould there be a jitter?
yOutput
beta_estIs beta being estimated?
alpha_estIs alpha being estimated?
s2_estIs s2 being estimated?
param_optim_lower()Lower bounds of parameters for optimization
RatQuad$param_optim_lower( beta_est = self$beta_est, alpha_est = self$alpha_est, s2_est = self$s2_est )
beta_estIs beta being estimated?
alpha_estIs alpha being estimated?
s2_estIs s2 being estimated?
param_optim_upper()Upper bounds of parameters for optimization
RatQuad$param_optim_upper( beta_est = self$beta_est, alpha_est = self$alpha_est, s2_est = self$s2_est )
beta_estIs beta being estimated?
alpha_estIs alpha being estimated?
s2_estIs s2 being estimated?
set_params_from_optim()Set parameters from optimization output
RatQuad$set_params_from_optim( optim_out, beta_est = self$beta_est, alpha_est = self$alpha_est, s2_est = self$s2_est )
optim_outOutput from optimization
beta_estIs beta being estimated?
alpha_estIs alpha being estimated?
s2_estIs s2 being estimated?
clone()The objects of this class are cloneable with this method.
RatQuad$clone(deep = FALSE)
deepWhether to make a deep clone.
# NOT RUN {
k1 <- RatQuad$new(beta=0, alpha=0)
# }
Run the code above in your browser using DataLab