Learn R Programming

GauPro (version 0.2.4)

Triangle: Triangle Kernel R6 class

Description

Triangle Kernel R6 class

Triangle Kernel R6 class

Arguments

Value

Object of R6Class with methods for fitting GP model.

Format

R6Class object.

Super classes

GauPro::GauPro_kernel -> GauPro::GauPro_kernel_beta -> GauPro_kernel_Triangle

Methods

Public methods

Method k()

Calculate covariance between two points

Usage

Triangle$k(x, y = NULL, beta = self$beta, s2 = self$s2, params = NULL)

Arguments

x

vector.

y

vector, optional. If excluded, find correlation of x with itself.

beta

Correlation parameters.

s2

Variance parameter.

params

parameters to use instead of beta and s2.

Method kone()

Find covariance of two points

Usage

Triangle$kone(x, y, beta, theta, s2)

Arguments

x

vector

y

vector

beta

correlation parameters on log scale

theta

correlation parameters on regular scale

s2

Variance parameter

Method dC_dparams()

Derivative of covariance with respect to parameters

Usage

Triangle$dC_dparams(params = NULL, X, C_nonug, C, nug)

Arguments

params

Kernel parameters

X

matrix of points in rows

C_nonug

Covariance without nugget added to diagonal

C

Covariance with nugget

nug

Value of nugget

Method dC_dx()

Derivative of covariance with respect to X

Usage

Triangle$dC_dx(XX, X, theta, beta = self$beta, s2 = self$s2)

Arguments

XX

matrix of points

X

matrix of points to take derivative with respect to

theta

Correlation parameters

beta

log of theta

s2

Variance parameter

Method clone()

The objects of this class are cloneable with this method.

Usage

Triangle$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

Run this code
# NOT RUN {
k1 <- Triangle$new(beta=0)
# }

Run the code above in your browser using DataLab