Triangle Kernel R6 class
Triangle Kernel R6 class
Object of R6Class
with methods for fitting GP model.
R6Class
object.
GauPro::GauPro_kernel
-> GauPro::GauPro_kernel_beta
-> GauPro_kernel_Triangle
k()
Calculate covariance between two points
Triangle$k(x, y = NULL, beta = self$beta, s2 = self$s2, params = NULL)
x
vector.
y
vector, optional. If excluded, find correlation of x with itself.
beta
Correlation parameters.
s2
Variance parameter.
params
parameters to use instead of beta and s2.
kone()
Find covariance of two points
Triangle$kone(x, y, beta, theta, s2)
x
vector
y
vector
beta
correlation parameters on log scale
theta
correlation parameters on regular scale
s2
Variance parameter
dC_dparams()
Derivative of covariance with respect to parameters
Triangle$dC_dparams(params = NULL, X, C_nonug, C, nug)
params
Kernel parameters
X
matrix of points in rows
C_nonug
Covariance without nugget added to diagonal
C
Covariance with nugget
nug
Value of nugget
dC_dx()
Derivative of covariance with respect to X
Triangle$dC_dx(XX, X, theta, beta = self$beta, s2 = self$s2)
XX
matrix of points
X
matrix of points to take derivative with respect to
theta
Correlation parameters
beta
log of theta
s2
Variance parameter
clone()
The objects of this class are cloneable with this method.
Triangle$clone(deep = FALSE)
deep
Whether to make a deep clone.
# NOT RUN {
k1 <- Triangle$new(beta=0)
# }
Run the code above in your browser using DataLab