White noise Kernel R6 class
White noise Kernel R6 class
Object of R6Class
with methods for fitting GP model.
R6Class
object.
GauPro::GauPro_kernel
-> GauPro_kernel_White
s2
variance
logs2
Log of s2
logs2_lower
Lower bound of logs2
logs2_upper
Upper bound of logs2
s2_est
Should s2 be estimated?
new()
Initialize kernel object
White$new(s2 = 1, D, s2_lower = 1e-08, s2_upper = 1e+08, s2_est = TRUE)
s2
Initial variance
D
Number of input dimensions of data
s2_lower
Lower bound for s2
s2_upper
Upper bound for s2
s2_est
Should s2 be estimated?
k()
Calculate covariance between two points
White$k(x, y = NULL, s2 = self$s2, params = NULL)
x
vector.
y
vector, optional. If excluded, find correlation of x with itself.
s2
Variance parameter.
params
parameters to use instead of beta and s2.
kone()
Find covariance of two points
White$kone(x, y, s2)
x
vector
y
vector
s2
Variance parameter
dC_dparams()
Derivative of covariance with respect to parameters
White$dC_dparams(params = NULL, X, C_nonug, C, nug)
params
Kernel parameters
X
matrix of points in rows
C_nonug
Covariance without nugget added to diagonal
C
Covariance with nugget
nug
Value of nugget
C_dC_dparams()
Calculate covariance matrix and its derivative with respect to parameters
White$C_dC_dparams(params = NULL, X, nug)
params
Kernel parameters
X
matrix of points in rows
nug
Value of nugget
dC_dx()
Derivative of covariance with respect to X
White$dC_dx(XX, X, s2 = self$s2)
XX
matrix of points
X
matrix of points to take derivative with respect to
s2
Variance parameter
theta
Correlation parameters
beta
log of theta
param_optim_start()
Starting point for parameters for optimization
White$param_optim_start(jitter = F, y, s2_est = self$s2_est)
jitter
Should there be a jitter?
y
Output
s2_est
Is s2 being estimated?
param_optim_start0()
Starting point for parameters for optimization
White$param_optim_start0(jitter = F, y, s2_est = self$s2_est)
jitter
Should there be a jitter?
y
Output
s2_est
Is s2 being estimated?
param_optim_lower()
Lower bounds of parameters for optimization
White$param_optim_lower(s2_est = self$s2_est)
s2_est
Is s2 being estimated?
param_optim_upper()
Upper bounds of parameters for optimization
White$param_optim_upper(s2_est = self$s2_est)
s2_est
Is s2 being estimated?
set_params_from_optim()
Set parameters from optimization output
White$set_params_from_optim(optim_out, s2_est = self$s2_est)
optim_out
Output from optimization
s2_est
s2 estimate
s2_from_params()
Get s2 from params vector
White$s2_from_params(params, s2_est = self$s2_est)
params
parameter vector
s2_est
Is s2 being estimated?
clone()
The objects of this class are cloneable with this method.
White$clone(deep = FALSE)
deep
Whether to make a deep clone.
# NOT RUN {
k1 <- White$new(s2=1e-8)
# }
Run the code above in your browser using DataLab