White noise Kernel R6 class
White noise Kernel R6 class
Object of R6Class with methods for fitting GP model.
R6Class object.
GauPro::GauPro_kernel -> GauPro_kernel_White
s2variance
logs2Log of s2
logs2_lowerLower bound of logs2
logs2_upperUpper bound of logs2
s2_estShould s2 be estimated?
new()Initialize kernel object
White$new(s2 = 1, D, s2_lower = 1e-08, s2_upper = 1e+08, s2_est = TRUE)
s2Initial variance
DNumber of input dimensions of data
s2_lowerLower bound for s2
s2_upperUpper bound for s2
s2_estShould s2 be estimated?
k()Calculate covariance between two points
White$k(x, y = NULL, s2 = self$s2, params = NULL)
xvector.
yvector, optional. If excluded, find correlation of x with itself.
s2Variance parameter.
paramsparameters to use instead of beta and s2.
kone()Find covariance of two points
White$kone(x, y, s2)
xvector
yvector
s2Variance parameter
dC_dparams()Derivative of covariance with respect to parameters
White$dC_dparams(params = NULL, X, C_nonug, C, nug)
paramsKernel parameters
Xmatrix of points in rows
C_nonugCovariance without nugget added to diagonal
CCovariance with nugget
nugValue of nugget
C_dC_dparams()Calculate covariance matrix and its derivative with respect to parameters
White$C_dC_dparams(params = NULL, X, nug)
paramsKernel parameters
Xmatrix of points in rows
nugValue of nugget
dC_dx()Derivative of covariance with respect to X
White$dC_dx(XX, X, s2 = self$s2)
XXmatrix of points
Xmatrix of points to take derivative with respect to
s2Variance parameter
thetaCorrelation parameters
betalog of theta
param_optim_start()Starting point for parameters for optimization
White$param_optim_start(jitter = F, y, s2_est = self$s2_est)
jitterShould there be a jitter?
yOutput
s2_estIs s2 being estimated?
param_optim_start0()Starting point for parameters for optimization
White$param_optim_start0(jitter = F, y, s2_est = self$s2_est)
jitterShould there be a jitter?
yOutput
s2_estIs s2 being estimated?
param_optim_lower()Lower bounds of parameters for optimization
White$param_optim_lower(s2_est = self$s2_est)
s2_estIs s2 being estimated?
param_optim_upper()Upper bounds of parameters for optimization
White$param_optim_upper(s2_est = self$s2_est)
s2_estIs s2 being estimated?
set_params_from_optim()Set parameters from optimization output
White$set_params_from_optim(optim_out, s2_est = self$s2_est)
optim_outOutput from optimization
s2_ests2 estimate
s2_from_params()Get s2 from params vector
White$s2_from_params(params, s2_est = self$s2_est)
paramsparameter vector
s2_estIs s2 being estimated?
clone()The objects of this class are cloneable with this method.
White$clone(deep = FALSE)
deepWhether to make a deep clone.
# NOT RUN {
k1 <- White$new(s2=1e-8)
# }
Run the code above in your browser using DataLab