Learn R Programming

GenHMM1d (version 0.2.1)

GofHMMGen: Goodness-of-fit of univariate hidden Markov model

Description

This function performs a goodness-of-fit test for a univariate hidden Markov model

Usage

GofHMMGen(
  y,
  ZI = 0,
  reg,
  family,
  start = 0,
  max_iter = 10000,
  eps = 1e-04,
  size = 0,
  n_samples = 1000,
  n_cores = 1,
  useFest = TRUE
)

Value

pvalue

pvalue of the Cramer-von Mises statistic in percent

theta

Estimated parameters; (r x p)

Q

estimated transition matrix; ; (r x r)

eta

(conditional probabilities of being in regime k at time t given observations up to time t; (n x r)

lambda

conditional probabilities of being in regime k at time t given all observations; (n x r)

U

matrix of Rosenblatt transforms; (n x r)

cvm

Cramer-von-Mises statistic for goodness-of-fit

W

pseudo-observations that should be uniformly distributed under the null hypothesis

LL

log-likelihood

nu

stationary distribution

AIC

Akaike information criterion

BIC

bayesian information criterion

CAIC

consistent Akaike information criterion

AICcorrected

Akaike information criterion corrected

HQC

Hannan-Quinn information criterion

stats

Empirical means and standard deviation of each regimes using lambda

pred_l

Estimated regime using lambda

pred_e

Estimated regime using eta

runs_l

Estimated number of runs using lambda

runs_e

Estimated number of runs using eta

Arguments

y

observations

ZI

1 if zero-inflated, 0 otherwise (default)

reg

number of regimes

family

distribution name; run the function distributions() for help

start

starting parameter for the estimation

max_iter

maximum number of iterations of the EM algorithm; suggestion 10000

eps

precision (stopping criteria); suggestion 0.0001.

size

additional parameter for some discrete distributions; run the command distributions() for help

n_samples

number of bootstrap samples; suggestion 1000

n_cores

number of cores to use in the parallel computing

useFest

TRUE (default) to use the first estimated parameters as starting value for the bootstrap, FALSE otherwise

Examples

Run this code
family = "gaussian"
Q = matrix(c(0.8, 0.3, 0.2, 0.7), 2, 2) ; theta = matrix(c(0, 1.7, 0, 1),2,2) ;
y = SimHMMGen(theta, size=0, Q, ZI=1, family,  100)$SimData
out=GofHMMGen(y,1,2,family,n_samples=10)


Run the code above in your browser using DataLab