contord

0th

Percentile

Correlations of discretized variables

The function computes the correlation matrix of the $k$ variables, with given marginal distributions, derived discretizing a $k$-variate standard normal variable with given correlation matrix

Keywords
multivariate, models, distribution, htest, datagen
Usage
contord(marginal, Sigma, support = list(), Spearman = FALSE)
Arguments
marginal
a list of $k$ elements, where $k$ is the number of variables. The $i$-th element of marginal is the vector of the cumulative probabilities defining the marginal distribution of the $i$-th component of the multivariate variable. If the $i$-th component can take $k_i$ values, the $i$-th element of marginal will contain $k_i-1$ probabilities (the $k_i$-th is obviously 1 and shall not be included).
Sigma
the correlation matrix of the standard multivariate normal variable
support
a list of $k$ elements, where $k$ is the number of variables. The $i$-th element of support is the vector containing the ordered values of the support of the $i$-th variable. By default, the support of the $i$-th variable is $1,2,...,k_i$
Spearman
if TRUE, the function finds Spearman's correlations (and it is not necessary to provide support), if FALSE (default) Pearson's correlations
Value

the correlation matrix of the discretized variables

See Also

ordcont, ordsample, corrcheck

Aliases
  • contord
Examples
# consider 4 discrete variables
k <- 4
# with these marginal distributions
marginal <- list(0.4,c(0.3,0.6), c(0.25,0.5,0.75), c(0.1,0.2,0.8,0.9))
# generated discretizing a multivariate standard normal variable
# with correlation matrix
Sigma <- matrix(0.5,4,4)
diag(Sigma) <- 1
# the resulting correlation matrix for the discrete variables is
contord(marginal, Sigma)
# note all the correlations are smaller than the original 0.6
# change Sigma, adding a negative correlation
Sigma[1,2] <- -0.15
Sigma[2,1] <- Sigma[1,2]
Sigma
# checking whether Sigma is still positive definite
eigen(Sigma)$values # all >0, OK
contord(marginal, Sigma)
Documentation reproduced from package GenOrd, version 1.4.0, License: GPL

Community examples

Looks like there are no examples yet.