
qqnig
produces a normal inverse Gaussian Q-Q plot of the values in
y
.
ppnig
produces a normal inverse Gaussian P-P (percent-percent) or
probability plot of the values in y
.
Graphical parameters may be given as arguments to qqnig
,
and ppnig
.
qqnig(y, mu = 0, delta = 1, alpha = 1, beta = 0,
param = c(mu, delta, alpha, beta),
main = "Normal inverse Gaussian Q-Q Plot",
xlab = "Theoretical Quantiles",
ylab = "Sample Quantiles",
plot.it = TRUE, line = TRUE, ...)ppnig(y, mu = 0, delta = 1, alpha = 1, beta = 0,
param = c(mu, delta, alpha, beta),
main = "Normal inverse Gaussian P-P Plot",
xlab = "Uniform Quantiles",
ylab = "Probability-integral-transformed Data",
plot.it = TRUE, line = TRUE, ...)
For qqnig
and ppnig
, a list with components:
The x coordinates of the points that are to be plotted.
The y coordinates of the points that are to be plotted.
The data sample.
Parameters of the normal inverse Gaussian distribution.
Plot labels.
Logical. Should the result be plotted?
Add line through origin with unit slope.
Further graphical parameters.
Wilk, M. B. and Gnanadesikan, R. (1968) Probability plotting methods for the analysis of data. Biometrika. 55, 1--17.
ppoints
, dnig
, nigFit
par(mfrow = c(1, 2))
param <- c(2, 2, 2, 1.5)
y <- rnig(200, param = param)
qqnig(y, param = param, line = FALSE)
abline(0, 1, col = 2)
ppnig(y, param = param)
Run the code above in your browser using DataLab