# NOT RUN {
if(require("ranger")){
## generate data
set.seed(1)
n <- 150 # number of observations
p <- 5 # number of covariates
D <- rbinom(n, 1, 0.5) # random treatment assignment
Z <- matrix(runif(n*p), n, p) # design matrix
Y0 <- as.numeric(Z %*% rexp(p) + rnorm(n)) # potential outcome without treatment
Y1 <- 2 + Y0 # potential outcome under treatment
Y <- ifelse(D == 1, Y1, Y0) # observed outcome
A_set <- sample(1:n, size = n/2) # auxiliary set
## BCA predictions via random forest
proxy_BCA(Z, D, Y, A_set, learner = "mlr3::lrn('ranger', num.trees = 10)")
}
# }
Run the code above in your browser using DataLab