GPC(pA, pD, RRAa, RRAA, r2, pB, nCase=500, ratio=1, alpha=0.05, quiet=FALSE) GPC.default(pA, pD, RRAa, RRAA, Dprime, pB, nCase=500, ratio=1, alpha=0.05, quiet=FALSE)A).Aa) = RR(Aa|aa)=Pr(D|Aa)/Pr(D|aa).AA) = RR(AA|aa)=Pr(D|AA)/Pr(D|aa).D > 0.B).= nControl/nCase.quiet=FALSE.Aa), genotypic relative risk (AA), genotypic risk for aa (baseline).B parameters, including marker allele frequency, linkage disequilibrium (D'), penetrance at marker genotype bb, penetrance at marker genotype Bb, penetrance at marker genotype BB, genotypic odds ratio Bb, genotypic odds ratio BB.Pr(B|D), Pr(b|D), Pr(B|non D), Pr(b|non D).Pr(BB|D), Pr(Bb|D), Pr(bb|D), Pr(BB|non D), Pr(Bb|non D), Pr(bb|non D).A), disease prevalence, genotype relative risk (Aa), genotype relative risk (AA), LD measure (D' or r^2), marker allele frequency (B), number of cases, control:case ratio, and probability of the Type I error. The linear trend test (Cochran 1954; Armitage 1955) is used.
Cochran, W.G. (1954) Some methods for strengthening the common chi-squared tests. Biometrics, 10, 417-451.
Gordon D, Finch SJ, Nothnagel M, Ott J (2002) Power and sample size calculations for case-control genetic association tests when errors are present: application to single nucleotide polymorphisms. Hum. Hered., 54:22-33.
Gordon D, Haynes C, Blumenfeld J, Finch SJ (2005) PAWE-3D: visualizing Power for Association With Error in case/control genetic studies of complex traits. Bioinformatics, 21:3935-3937.
Purcell S, Cherny SS, Sham PC. (2003). Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics, 19(1):149-150.
Sham P. (1998). Statistics in Human Genetics. Arnold Applications of Statistics.
res1<-GPC(pA=0.05, pD=0.1, RRAa=1.414, RRAA=2, r2=0.9, pB=0.06,
nCase=500, ratio=1, alpha=0.05, quiet=FALSE)
res2<-GPC.default(pA=0.05, pD=0.1, RRAa=1.414, RRAA=2, Dprime=0.9, pB=0.06,
nCase=500, ratio=1, alpha=0.05, quiet=FALSE)
Run the code above in your browser using DataLab