library(GeoModels)
################################################################
### Example 1. Empirical semivariogram from a spatial Gaussian
### random field with Matérn correlation.
################################################################
set.seed(514)
x = runif(200, 0, 1)
y = runif(200, 0, 1)
coords = cbind(x,y)
corrmodel = "Matern"
mean = 0
sill = 1
nugget = 0
scale = 0.3/3
smooth = 0.5
data = GeoSim(coordx=coords, corrmodel=corrmodel,
param=list(mean=mean, smooth=smooth, sill=sill,
nugget=nugget, scale=scale))$data
vario = GeoVariogram(coordx=coords, data=data, maxdist=0.6)
plot(vario, pch=20, ylim=c(0,1), ylab="Semivariogram", xlab="Distance")
################################################################
### Example 2. Empirical semivariogram for a spatio-temporal
### Gaussian random field with Gneiting correlation.
################################################################
set.seed(331)
x = runif(200, 0, 1)
y = runif(200, 0, 1)
coords = cbind(x,y)
times = seq(1,10,1)
data = GeoSim(coordx=coords, coordt=times, corrmodel="gneiting",
param=list(mean=0, scale_s=0.08, scale_t=0.4, sill=1,
nugget=0, power_s=1, power_t=1, sep=0.5))$data
vario_st = GeoVariogram(data=data, coordx=coords, coordt=times,
maxtime=7, maxdist=0.5)
plot(vario_st, pch=20)
################################################################
### Example 3. Empirical (cross-)semivariograms for a bivariate
### Gaussian random field with Bi-Matérn covariance.
################################################################
set.seed(293)
x = runif(400, 0, 1)
y = runif(400, 0, 1)
coords = cbind(x,y)
param = list(mean_1=0, mean_2=0,
scale_1=0.1/3, scale_2=0.15/3, scale_12=0.15/3,
sill_1=1, sill_2=1,
nugget_1=0, nugget_2=0,
smooth_1=0.5, smooth_12=0.5, smooth_2=0.5,
pcol=0.3)
data = GeoSim(coordx=coords, corrmodel="Bi_matern", param=param)$data
biv_vario = GeoVariogram(data, coordx=coords, bivariate=TRUE, maxdist=0.5)
plot(biv_vario, pch=20)
Run the code above in your browser using DataLab