GeoTcgaData
The goal of GeoTcgaData is to deal with RNA-seq, DNA Methylation, single nucleotide Variation and Copy number variation data in GEO and TCGA.
:writing_hand: Authors
Erqiang Hu
College of Bioinformatics Science and Technology, Harbin Medical University
:arrow_double_down: Installation
Get the released version from CRAN:
install.packages("GeoTcgaData")
Or the development version from github:
if(!requireNamespace("devtools", quietly = TRUE))
install.packages("devtools")
devtools::install_github("huerqiang/GeoTcgaData")
GEO and TCGA provide us with a wealth of data, such as RNA-seq, DNA Methylation, single nucleotide Variation and Copy number variation data. It's easy to download data from TCGA using the gdc tool or TCGAbiolinks
, but processing these data into a format suitable for bioinformatics analysis requires more work. This R package was developed to handle these data.
Example
This is a basic example which shows you how to solve a common problem:
RNA-seq data differential expression analysis
Use TCGAbiolinks
or GDCRNATools
to download and analysis Gene expression data. TCGAbiolinks
use edgeR
package to do differential expression analysis, while GDCRNATools
can implement three most commonly used methods: limma, edgeR , and DESeq2 to identify differentially expressed genes (DEGs).
DNA Methylation data integration
use TCGAbiolinks
to download TCGA data
library(TCGAbiolinks)
query <- GDCquery(project = "TCGA-ACC",
data.category = "DNA Methylation",
data.type = "Methylation Beta Value",
platform = "Illumina Human Methylation 450")
GDCdownload(query, method = "api", files.per.chunk = 5, directory = Your_Path)
The function Merge_methy_tcga could Merge methylation data downloaded from TCGA official website or TCGAbiolinks. This makes it easier to extract differentially methylated genes in the downstream analysis. For example:
merge_result <- Merge_methy_tcga(Your_Path_to_DNA_Methylation_data)
Then use ChAMP
package to do difference analysis.
library(ChAMP)
diff_gene <- methyDiff(cpgData = merge_result, sampleGroup = sample(c("C","T"),
ncol(merge_result[[1]]), replace = TRUE))
Use clusterProfiler
to do enrichment analytics:
diff_gene$p.adj <- p.adjust(diff_gene$pvalue)
genes <- diff_gene[diff_gene$p.adj < 0.05, "gene"]
library(clusterProfiler)
library(enrichplot)
library(org.Hs.eg.db)
ego <- enrichGO(gene = genes, OrgDb = org.Hs.eg.db, keyType = "SYMBOL")
dotplot(ego)
Copy number variation data integration and differential gene extraction
use TCGAbiolinks to download TCGA data(Gene Level Copy Number Scores)
library(TCGAbiolinks)
query <- GDCquery(project = "TCGA-LGG",
data.category = "Copy Number Variation",
data.type = "Gene Level Copy Number Scores")
GDCdownload(query, method = "api", files.per.chunk = 5, directory = Your_Path)
data <- GDCprepare(query = query,
directory = "Your_Path")
Do difference analysis of gene level copy number variation data using diff_CNV
class(data) <- "data.frame"
cnvData <- data[, -c(1,2,3)]
rownames(cnvData) <- data[, 1]
sampleGroup = sample(c("A","B"), ncol(cnvData), replace = TRUE)
diffCnv <- diff_CNV(cnvData, sampleGroup)
Use clusterProfiler
to do enrichment analytics:
pvalues <- diffCnv$pvalue * sign(diffCnv$odds)
genes <- rownames(diffCnv)[diffCnv$pvalue < 0.05]
library(clusterProfiler)
library(enrichplot)
library(org.Hs.eg.db)
ego <- enrichGO(gene = genes, OrgDb = org.Hs.eg.db, keyType = "ENSEMBL")
dotplot(ego)
Difference analysis of single nucleotide Variation data
Use TCGAbiolinks to download TCGA data
library(TCGAbiolinks)
query <- GDCquery(project = "TCGA-ACC",
data.category = "Simple Nucleotide Variation",
data.type = "Masked Somatic Mutation",
workflow.type = "MuSE Variant Aggregation and Masking")
GDCdownload(query, method = "api", files.per.chunk = 5, directory = Your_Path)
data_snp <- GDCprepare(query = query,
directory = "Your_Path")
Use diff_SNP_tcga
to do difference analysis
samples <- unique(data_snp$Tumor_Sample_Barcode)
sampleType <- sample(c("A","B"), length(samples), replace = TRUE)
names(sampleType) <- samples
pvalue <- diff_SNP_tcga(snpData = data_snp, sampleType = sampleType)
Use clusterProfiler
to do enrichment analysis
pvalue2 <- sort(pvalue, decreasing = TRUE)
library(clusterProfiler)
library(enrichplot)
library(org.Hs.eg.db)
gsego <- gseGO(pvalue2, OrgDb = org.Hs.eg.db, keyType = "SYMBOL")
dotplot(gsego)
GEO chip data processing
The function gene_ave
could average the expression data of different ids for the same gene in the GEO chip data. For example:
aa <- c("MARCH1","MARC1","MARCH1","MARCH1","MARCH1")
bb <- c(2.969058399,4.722410064,8.165514853,8.24243893,8.60815086)
cc <- c(3.969058399,5.722410064,7.165514853,6.24243893,7.60815086)
file_gene_ave <- data.frame(aa=aa,bb=bb,cc=cc)
colnames(file_gene_ave) <- c("Gene", "GSM1629982", "GSM1629983")
result <- gene_ave(file_gene_ave, 1)
Multiple genes symbols may correspond to a same chip id. The result of function rep1
is to assign the expression of this id to each gene, and function rep2
deletes the expression. For example:
aa <- c("MARCH1 /// MMA","MARC1","MARCH2 /// MARCH3","MARCH3 /// MARCH4","MARCH1")
bb <- c("2.969058399","4.722410064","8.165514853","8.24243893","8.60815086")
cc <- c("3.969058399","5.722410064","7.165514853","6.24243893","7.60815086")
input_file <- data.frame(aa=aa,bb=bb,cc=cc)
rep1_result <- rep1(input_file," /// ")
rep2_result <- rep2(input_file," /// ")
Other downstream analyses
- The function
id_conversion_vector
could convert gene id from one ofsymbol
,RefSeq_ID
,Ensembl_ID
,NCBI_Gene_ID
,UCSC_ID
, andUniProt_ID
, etc. to another. Useid_ava()
to get all the convertible ids. For example:
id_conversion_vector("symbol", "ensembl_gene_id", c("A2ML1", "A2ML1-AS1", "A4GALT", "A12M1", "AAAS"))
# 80% were successfully converted.
# from to
# 1 A2ML1 ENSG00000166535
# 2 A2ML1-AS1 ENSG00000256661
# 3 A4GALT ENSG00000128274
# 4 A12M1 <NA>
# 5 AAAS ENSG00000094914
When the user converts the Ensembl ID to other ids, the version number needs to be removed. For example, "ENSG00000186092.4" doesn't work, you need to change it to "ENSG00000186092".
Especially, the function id_conversion could convert ENSEMBL gene id to gene Symbol in TCGA. For example:
result <- id_conversion(profile)
The parameter profile is a data.frame or matrix of gene expression data in TCGA.
Note: In previous versions(< 1.0.0) the id_conversion
and id_conversion_vector
used HGNC data to convert human gene id. In future versions, we will use clusterProfiler::bitr
for ID conversion.
library(clusterProfiler)
bitr(c("A2ML1", "A2ML1-AS1", "A4GALT", "A12M1", "AAAS"), fromType = "SYMBOL", toType = "ENSEMBL", OrgDb = org.Hs.eg.db, drop = FALSE)
# 'select()' returned 1:1 mapping between keys and columns
# SYMBOL ENSEMBL
# 1 A2ML1 ENSG00000166535
# 2 A2ML1-AS1 <NA>
# 3 A4GALT ENSG00000128274
# 4 A12M1 <NA>
# 5 AAAS ENSG00000094914
# Warning message:
# In bitr(c("A2ML1", "A2ML1-AS1", "A4GALT", "A12M1", "AAAS"), fromType = "SYMBOL", :
# 40% of input gene IDs are fail to map...
- The function
countToFpkm_matrix
andcountToTpm_matrix
could convert count data to FPKM or TPM data.
lung_squ_count2 <- matrix(c(1,2,3,4,5,6,7,8,9),ncol=3)
rownames(lung_squ_count2) <- c("DISC1","TCOF1","SPPL3")
colnames(lung_squ_count2) <- c("sample1","sample2","sample3")
jieguo <- countToFpkm_matrix(lung_squ_count2)
lung_squ_count2 <- matrix(c(11,22,23,14,15,6,17,18,29),ncol=3)
rownames(lung_squ_count2) <- c("DISC1","TCOF1","SPPL3")
colnames(lung_squ_count2) <- c("sample1","sample2","sample3")
jieguo <- countToTpm_matrix(lung_squ_count2)
- The function
tcga_cli_deal
could combine clinical information obtained from TCGA and extract survival data. For example:
tcga_cli <- tcga_cli_deal(system.file(file.path("extdata","tcga_cli"),package="GeoTcgaData"))
Note: Now the combined clinical data can be downloaded directly from TCGAbiolinks.
library(TCGAbiolinks)
query <- GDCquery(project = "TCGA-ACC",
data.category = "Clinical",
data.type = "Clinical Supplement",
data.format = "BCR Biotab")
GDCdownload(query)
clinical.BCRtab.all <- GDCprepare(query)
names(clinical.BCRtab.all)