Learn R Programming

GibbsACOV (version 1.1)

acovamcmc: Gibbs sampler for one-way mixed-effects ANOVA and ANCOVA models.

Description

Gibbs sampler for one-way mixed-effects ANOVA and ANCOVA models using flat priors.

Usage

acovamcmc(Y, trt, X, nochn, numIter, initval, credint = 0.95, Rthresh = 1.1)

Arguments

Y
Vector of reponses of n subjects
trt
Vector of categorical factor levels for n subjects
X
Design matrix with dimension (n x p) where p is the number of continuous predictors (for ANOVA, p = 1 to include grand mean)
nochn
Number of chains to test convergence of the Gibbs sampler
numIter
Number of iterations in the Gibbs sampler
initval
Matrix of initial values for Gibbs sampler with dimension (nochn, (p + nlevels(trt) + 2))
credint
Coverage probability for parameter credible intervals
Rthresh
Gelman-Rubin diagnostic for test of convergence

Value

S3 acovamcmc object; a list consisting of
beta
values of regression coefficients for each iteration
sig2a
values of mixed-effect variance for each iteration
sig2e
values of error variance for each iteration
Credible_Interval
lower bound, point estimate, and upper bound for parameters
Credible_Interval_Coverage
coverage percentage for credible intervals
Convergence_Diag
status of Gibbs sampler convergence using threshold set for Gelman and Rubin's diagnostic
Gelman_Rubin_Threshold
threshold set for Gelman and Rubin's diagnostic
Iterations
number of iterations of Gibbs sampler
Run_Time
total elapsed seconds

References

Gelman, A and Rubin, DB (1992) Inference from iterative simulation using multiple sequences, Statistical Science, 7, 457-511.

Examples

Run this code
## Not run: 
# # ANCOVA with 2 continuous predictors and 5 factor levels
#   data(corn)
#   init1 <- c(rep(0,7), 1, 1)
#   init2 <- c(rnorm(7), rgamma(2,2,1))
#   init3 <- c(rnorm(7), rgamma(2,2,1))
#   init4 <- c(rnorm(7), rgamma(2,2,1))
#   initval <- rbind(init1, init2, init3, init4)
#   acovamcmc(corn$yield, corn$variety, cbind((corn$nitrogen)^2, corn$nitrogen), 4, 10000 , initval)
# # ANOVA with grand mean parameterization and 12 factor levels
#   data(csection)
#   init1 <- c(rep(0,13), 1, 1)
#   init2 <- c(rnorm(13), rgamma(2,2,1))
#   init3 <- c(rnorm(13), rgamma(2,2,1))
#   init4 <- c(rnorm(13), rgamma(2,2,1))
#   initval <- rbind(init1, init2, init3, init4)
#   Y = log(csection$rate / (1-csection$rate))
#   acovamcmc(Y, factor(csection$hospital), matrix(1,length(csection$hospital),1), 4, 10000, initval)
# ## End(Not run)

Run the code above in your browser using DataLab