GraphClust(mutation.data, position.data, insertion.type = "cheapest_insertion", alpha = 0.05,
MultComp = "Bonferroni", fix.start.pos = "Y", Include.Culled = "Y",
Include.Full = "Y")The position data can be created via the ``get.AlignedPositions" or the ``get.Positions" functions available via the imported iPAC package.
The mutation matrix must have the default R column headings ``V1", ``V2",...,``VN", where N is the last amino acid in the protein. No positions should be skipped in the mutaion matrix.
When unmapping back to the original space, the end points of the cluster in the mapped space are used as the endpoints of the cluster in the unmapped space.
Michael Hahsler and Kurt Hornik (2011). Traveling Salesperson Problem (TSP) R package version 1.0-7. http://CRAN.R-project.org/.
Csardi G, Nepusz T: The igraph software package for complex network research, InterJournal, Complex Systems 1695. 2006. http://igraph.sf.net
Gregory Ryslik and Hongyu Zhao (2012). iPAC: Identification of Protein Amino acid Clustering. R package version 1.1.3. http://www.bioconductor.org/.
## Not run:
# #Load the positional and mutatioanl data
# CIF<-"http://www.pdb.org/pdb/files/3GFT.cif"
# Fasta<-"http://www.uniprot.org/uniprot/P01116-2.fasta"
# KRAS.Positions<-get.Positions(CIF,Fasta, "A")
# data(KRAS.Mutations)
#
# #Calculate the required clusters
# GraphClust(KRAS.Mutations,KRAS.Positions$Positions,insertion.type = "cheapest_insertion",
# alpha = 0.05, MultComp = "Bonferroni")
# ## End(Not run)
Run the code above in your browser using DataLab