Learn R Programming

GsymPoint (version 1.1.2)

plot.gsym.point: Default plotting of a gsym.point object

Description

On the basis of a gsym.point object, it is used to plot the Receiver Operating Characteristic (ROC) curve, the line \(y = 1-\rho t\) and the optimal ROC coordinates associated to the Generalized Symmetry point.

Usage

## S3 method for class 'optimal.cutpoints'
# S3 method for gsym.point
plot(x, xlab, ylab, main, ...)

Arguments

x

an object of class gsym.point as produced by the gsym.point() function

xlab

the x axis label of the plot. By default this label is set to "False Positive Rate"

ylab

the y axis label of the plot. By default this label is set to "True Positive Rate"

main

the title of the plot. By default this title is set to "Empirical ROC Curve and line \(y = 1-\rho x\)"

...

further arguments passed to or from other methods

Author

Mónica López-Ratón, Carmen Cadarso-Suárez, Elisa M. Molanes-López and Emilio Letón

See Also

gsym.point, control.gsym.point

Examples

Run this code
library(GsymPoint)

data(melanoma)

###########################################################
# Generalized Pivotal Quantity Method ("GPQ"): 
###########################################################

gsym.point.GPQ.melanoma<-gsym.point(methods = "GPQ", data = melanoma,
marker = "X", status = "group", tag.healthy = 0, categorical.cov = NULL, 
CFN = 1, CFP = 1, control = control.gsym.point(),confidence.level = 0.95, 
trace = FALSE, seed = FALSE, value.seed = 3, verbose = FALSE)

plot(gsym.point.GPQ.melanoma)


data(prostate)

###########################################################
# Generalized Pivotal Quantity Method ("GPQ"): 
###########################################################

gsym.point.GPQ.prostate <- gsym.point (methods = "GPQ", data = prostate,
marker = "marker", status = "status", tag.healthy = 0, categorical.cov = NULL, 
CFN = 1, CFP = 1, control = control.gsym.point(), confidence.level = 0.95, 
trace = FALSE, seed = FALSE, value.seed = 3, verbose = FALSE)

plot(gsym.point.GPQ.prostate)


data(elastase)

###########################################################
# Generalized Pivotal Quantity Method ("GPQ"): 
###########################################################

gsym.point.GPQ.elastase <- gsym.point(methods = "GPQ", data = elastase, 
marker = "elas", status = "status", tag.healthy = 0, categorical.cov = NULL, 
CFN = 1, CFP = 1, control = control.gsym.point(), confidence.level = 0.95, 
trace = FALSE, seed = FALSE, value.seed = 3, verbose = FALSE) 

plot(gsym.point.GPQ.elastase)

Run the code above in your browser using DataLab