Learn R Programming

GsymPoint (version 1.1.2)

summary.gsym.point: Summary method for gsym.point objects

Description

Produces a summary of a gsym.point object. The following is printed: the matched call to the gsym.point() main function; the area under the ROC curve (AUC) estimate; the Generalized Symmetry point obtained with the method(s) selected and the point estimates of the associated sensitivity and specificity indexes with their corresponding confidence intervals. All this information will be shown for each categorical covariate level (if the categorical.cov argument in the gsym.point() function is not NULL).

Usage

# S3 method for gsym.point
summary(object, ...)

Value

Returns an object of class "summary.gsym.point" with the same components as the gsym.point function (see gsym.point)

Arguments

object

an object of class gsym.point as produced by gsym.point() function.

...

further arguments passed to or from other methods. None are used in this method.

Author

Mónica López-Ratón, Carmen Cadarso-Suárez, Elisa M. Molanes-López and Emilio Letón

Details

The summary.gsym.point function produces a list of summary information for a fitted gsym.point object. The result depends on the two arguments, namely, methods, and categorical.cov of the gsym.point() function used in the Generalized Symmetry point computing process.

See Also

gsym.point

Examples

Run this code
library(GsymPoint)

data(melanoma)

###########################################################
# Generalized Pivotal Quantity Method ("GPQ"): 
###########################################################

gsym.point.GPQ.melanoma<-gsym.point(methods = "GPQ", data = melanoma,
marker = "X", status = "group", tag.healthy = 0, categorical.cov = NULL, 
CFN = 1, CFP = 1, control = control.gsym.point(),confidence.level = 0.95, 
trace = FALSE, seed = FALSE, value.seed = 3, verbose = FALSE)

summary(gsym.point.GPQ.melanoma)


data(prostate)

###########################################################
# Generalized Pivotal Quantity Method ("GPQ"): 
###########################################################

gsym.point.GPQ.prostate <- gsym.point (methods = "GPQ", data = prostate,
marker = "marker", status = "status", tag.healthy = 0, categorical.cov = NULL, 
CFN = 1, CFP = 1, control = control.gsym.point(), confidence.level = 0.95, 
trace = FALSE, seed = FALSE, value.seed = 3, verbose = FALSE)

summary(gsym.point.GPQ.prostate)


data(elastase)

###########################################################
# Generalized Pivotal Quantity Method ("GPQ"): 
###########################################################

gsym.point.GPQ.elastase <- gsym.point(methods = "GPQ", data = elastase, 
marker = "elas", status = "status", tag.healthy = 0, categorical.cov = NULL, 
CFN = 1, CFP = 1, control = control.gsym.point(), confidence.level = 0.95, 
trace = FALSE, seed = FALSE, value.seed = 3, verbose = FALSE) 

summary(gsym.point.GPQ.elastase)

Run the code above in your browser using DataLab