Learn R Programming

GulFM (version 0.5.0)

generate_gfm_data: Generate general factor model with smooth latent transformation

Description

Generate general factor model with smooth latent transformation

Usage

generate_gfm_data(n, p, m, g_fun, seed = 1, sigma_V = 0.1)

Value

List with components X : n * p matrix of standardised observations. A1 : p * m first-layer loading matrix. A2 : m * m second-layer loading matrix. Ag : p * m overall loading matrix (Ag = A1

F1 : n * m latent factors (before transformation). gF1: n * m latent factors (after transformation). V1 : n * p noise matrix (for diagnostics).

Arguments

n

Integer: sample size.

p

Integer: number of observed variables.

m

Integer: number of latent factors (both layers).

g_fun

Function: smooth, element-wise transformation applied to latent factors. Must be vectorised, e.g. `sin`, `tanh`, `scale`.

seed

1.

sigma_V

Numeric: standard deviation of the idiosyncratic noise (default 0.1 => Var = 0.01).

Examples

Run this code
dat <- generate_gfm_data(200, 50, 5, g_fun = tanh)

Run the code above in your browser using DataLab