generate_gfm_data: Generate general factor model with smooth latent transformation
Description
Generate general factor model with smooth latent transformation
Usage
generate_gfm_data(n, p, m, g_fun, seed = 1, sigma_V = 0.1)
Value
List with components
X : n * p matrix of standardised observations.
A1 : p * m first-layer loading matrix.
A2 : m * m second-layer loading matrix.
Ag : p * m overall loading matrix (Ag = A1
F1 : n * m latent factors (before transformation).
gF1: n * m latent factors (after transformation).
V1 : n * p noise matrix (for diagnostics).
Arguments
n
Integer: sample size.
p
Integer: number of observed variables.
m
Integer: number of latent factors (both layers).
g_fun
Function: smooth, element-wise transformation applied to latent
factors. Must be vectorised, e.g. `sin`, `tanh`, `scale`.
seed
1.
sigma_V
Numeric: standard deviation of the idiosyncratic noise
(default 0.1 => Var = 0.01).