# NOT RUN {
set.seed(10)
X <- matrix(rnorm(20000), nrow = 100)
beta <- rep(0, 200)
beta[1:100] <- 5
Y <- MASS::mvrnorm(n = 1, mu = X%*%beta, Sigma = diag(100))
fit <- glmnet::cv.glmnet(x = X, y = Y)
pihat <- 0.01
result <- est.lambda(cv.fit = fit, pihat = pihat, p = ncol(X))
lambda.seq <- seq(from = result$lambda.min, to = result$lambda.max, length.out = 100)
# Note: The lambda sequences in glmnet and ncvreg are diffrent.
fit2 <- glmnet::cv.glmnet(x = X, y = Y, lambda = lambda.seq)
result2 <- final.selection(cv.fit = fit2, pihat = 0.01, p = ncol(X))
# }
Run the code above in your browser using DataLab