APCA function for fitting ANOVA Principal Component Analysis models.
Usage
apca(formula, data, add_error = TRUE, ...)
Value
An object of class apca, inheriting from the general asca class.
Further arguments and plots can be found in the asca documentation.
Arguments
formula
Model formula accepting a single response (block) and predictors.
data
The data set to analyse.
add_error
Add error to LS means (default = TRUE).
...
Additional parameters for the asca_fit function.
References
Harrington, P.d.B., Vieira, N.E., Espinoza, J., Nien, J.K., Romero, R., and Yergey, A.L. (2005)
Analysis of variance–principal component analysis: A soft tool for proteomic discovery.
Analytica chimica acta, 544 (1-2), 118–127.
See Also
Main methods: asca, apca, limmpca, msca, pcanova, prc and permanova.
Workhorse function underpinning most methods: asca_fit.
Extraction of results and plotting: asca_results, asca_plots, pcanova_results and pcanova_plots